1,408 research outputs found

    Impact analysis of low velocity to composite box containting water

    Get PDF
    A series of experimental studies were conducted for low velocity impact on a composite box containing water in order to study the Fluid-Structure Interaction (FSI). Finally, a computational study was conducted to supplement the experimental study. The water level inside the composite box was varied incrementally from 0% (i.e. no water) to 100% (full water). The impact velocity was also changed. In the experimental study, strain gages and the load cell were used to measure the strain responses at the front, side, and back surfaces as well as the impact force. The results showed that the FSI effect was significant to the structural responses depending on the water level. The effect of the baffle was different among the front, side and back surfaces. Both experimental and numerical results agreed well.Naval Postgraduate SchoolApproved for public release; distribution is unlimited

    Numerical Computation of Finite Size Scaling Functions: An Alternative Approach to Finite Size Scaling

    Full text link
    Using single cluster flip Monte Carlo simulations we accurately determine new finite size scaling functions which are expressed only in terms the variable x=ξL/Lx = \xi_L / L, where ξL\xi_L is the correlation length in a finite system of size LL. Data for the d=2 and d=3 Ising models, taken at different temperatures and for different size lattices, show excellent data collapse over the entire range of scaling variable for susceptibility and correlation length. From these finite size scaling functions we can estimate critical temperatures and exponents with rather high accuracy even though data are not obtained extremely close to the critical point. The bulk values of the renormalized four-point coupling constant are accurately measured and show strong evidence for hyperscaling.Comment: RevTex. 19 page

    Directed Ising type dynamic preroughening transition in one dimensional interfaces

    Full text link
    We present a realization of directed Ising (DI) type dynamic absorbing state phase transitions in the context of one-dimensional interfaces, such as the relaxation of a step on a vicinal surface. Under the restriction that particle deposition and evaporation can only take place near existing kinks, the interface relaxes into one of three steady states: rough, perfectly ordered flat (OF) without kinks, or disordered flat (DOF) with randomly placed kinks but in perfect up-down alternating order. A DI type dynamic preroughening transition takes place between the OF and DOF phases. At this critical point the asymptotic time evolution is controlled not only by the DI exponents but also by the initial condition. Information about the correlations in the initial state persists and changes the critical exponents.Comment: 12 pages, 10 figure

    Automatic segmentation of multiple cardiovascular structures from cardiac computed tomography angiography images using deep learning.

    Get PDF
    OBJECTIVES:To develop, demonstrate and evaluate an automated deep learning method for multiple cardiovascular structure segmentation. BACKGROUND:Segmentation of cardiovascular images is resource-intensive. We design an automated deep learning method for the segmentation of multiple structures from Coronary Computed Tomography Angiography (CCTA) images. METHODS:Images from a multicenter registry of patients that underwent clinically-indicated CCTA were used. The proximal ascending and descending aorta (PAA, DA), superior and inferior vena cavae (SVC, IVC), pulmonary artery (PA), coronary sinus (CS), right ventricular wall (RVW) and left atrial wall (LAW) were annotated as ground truth. The U-net-derived deep learning model was trained, validated and tested in a 70:20:10 split. RESULTS:The dataset comprised 206 patients, with 5.130 billion pixels. Mean age was 59.9 ± 9.4 yrs., and was 42.7% female. An overall median Dice score of 0.820 (0.782, 0.843) was achieved. Median Dice scores for PAA, DA, SVC, IVC, PA, CS, RVW and LAW were 0.969 (0.979, 0.988), 0.953 (0.955, 0.983), 0.937 (0.934, 0.965), 0.903 (0.897, 0.948), 0.775 (0.724, 0.925), 0.720 (0.642, 0.809), 0.685 (0.631, 0.761) and 0.625 (0.596, 0.749) respectively. Apart from the CS, there were no significant differences in performance between sexes or age groups. CONCLUSIONS:An automated deep learning model demonstrated segmentation of multiple cardiovascular structures from CCTA images with reasonable overall accuracy when evaluated on a pixel level

    Scaling and finte-size-scaling in the two dimensional random-coupling Ising ferromagnet

    Full text link
    It is shown by Monte Carlo method that the finite size scaling (FSS) holds in the two dimensional random-coupled Ising ferromagnet. It is also demonstrated that the form of universal FSS function constructed via novel FSS scheme depends on the strength of the random coupling for strongly disordered cases. Monte Carlo measurements of thermodynamic (infinite volume limit) data of the correlation length (ξ\xi) up to ξ200\xi \simeq 200 along with measurements of the fourth order cumulant ratio (Binder's ratio) at criticality are reported and analyzed in view of two competing scenarios. It is demonstrated that the data are almost exclusively consistent with the scenario of weak universality.Comment: 9 pages, 4figuer

    Clinical features and long-term prognosis of acute fibrinous and organizing pneumonia histologically confirmed by surgical lung biopsy

    Get PDF
    Abstract Background Acute fibrinous and organizing pneumonia (AFOP) is a rare interstitial pneumonia characterized by intra-alveolar fibrin deposition and organizing pneumonia. The clinical manifestations and long-term prognosis of AFOP are unclear. Our objective was to investigate the clinical features and prognosis of AFOP. Methods We identified patients diagnosed with AFOP by surgical lung biopsy between January 2011 and May 2018 at Seoul National University Bundang Hospital. We retrospectively reviewed clinical and radiologic findings, treatment, and outcomes of AFOP. Results Fifteen patients with histologically confirmed lung biopsies were included. The median follow-up duration was 2.4 (range, 0.1–82) months. The median age was 55 (range, 33–75) years, and four patients were immunocompromised. Fever was the most common clinical presentation (86.7%). Patchy ground-glass opacities and/or consolidations were the most predominant findings on chest computed tomography images. Nine patients (60%) received mechanical ventilator care, and eight patients (53.3%) died. The non-survivors tended to have slightly higher body mass index (BMI) and a long interval between symptom onset and diagnosis than the survivors, but these findings were not statistically significant. Among seven survivors, five patients were discharged without dyspnea and oxygen supplement. Conclusions The clinical course of AFOP was variable. Although AFOP was fatal, most of the patients who recovered from AFOP maintained normal life without supplemental oxygen therapy and respiratory symptoms

    Novel universality class of absorbing transitions with continuously varying critical exponents

    Full text link
    The well-established universality classes of absorbing critical phenomena are directed percolation (DP) and directed Ising (DI) classes. Recently, the pair contact process with diffusion (PCPD) has been investigated extensively and claimed to exhibit a new type of critical phenomena distinct from both DP and DI classes. Noticing that the PCPD possesses a long-term memory effect, we introduce a generalized version of the PCPD (GPCPD) with a parameter controlling the memory effect. The GPCPD connects the DP fixed point to the PCPD point continuously. Monte Carlo simulations show that the GPCPD displays novel type critical phenomena which are characterized by continuously varying critical exponents. The same critical behaviors are also observed in models where two species of particles are coupled cyclically. We suggest that the long-term memory may serve as a marginal perturbation to the ordinary DP fixed point.Comment: 13 pages + 10 figures (Full paper version

    Cinnamon extract induces tumor cell death through inhibition of NFκB and AP1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Cinnamomum cassia </it>bark is the outer skin of an evergreen tall tree belonging to the family Lauraceae containing several active components such as essential oils (cinnamic aldehyde and cinnamyl aldehyde), tannin, mucus and carbohydrate. They have various biological functions including anti-oxidant, anti-microbial, anti-inflammation, anti-diabetic and anti-tumor activity. Previously, we have reported that anti-cancer effect of cinnamon extracts is associated with modulation of angiogenesis and effector function of CD8<sup>+ </sup>T cells. In this study, we further identified that anti-tumor effect of cinnamon extracts is also link with enhanced pro-apoptotic activity by inhibiting the activities NFκB and AP1 in mouse melanoma model.</p> <p>Methods</p> <p>Water soluble cinnamon extract was obtained and quality of cinnamon extract was evaluated by HPLC (High Performance Liquid Chromatography) analysis. In this study, we tested anti-tumor activity and elucidated action mechanism of cinnamon extract using various types of tumor cell lines including lymphoma, melanoma, cervix cancer and colorectal cancer <it>in vitro </it>and <it>in vivo </it>mouse melanoma model.</p> <p>Results</p> <p>Cinnamon extract strongly inhibited tumor cell proliferation <it>in vitro </it>and induced active cell death of tumor cells by up-regulating pro-apoptotic molecules while inhibiting NFκB and AP1 activity and their target genes such as <it>Bcl-2</it>, <it>BcL-xL </it>and <it>survivin</it>. Oral administration of cinnamon extract in melanoma transplantation model significantly inhibited tumor growth with the same mechanism of action observed <it>in vitro</it>.</p> <p>Conclusion</p> <p>Our study suggests that anti-tumor effect of cinnamon extracts is directly linked with enhanced pro-apoptotic activity and inhibition of NFκB and AP1 activities and their target genes <it>in vitro </it>and <it>in vivo </it>mouse melanoma model. Hence, further elucidation of active components of cinnamon extract could lead to development of potent anti-tumor agent or complementary and alternative medicine for the treatment of diverse cancers.</p

    Phloroglucinol Inhibits the Bioactivities of Endothelial Progenitor Cells and Suppresses Tumor Angiogenesis in LLC-Tumor-Bearing Mice

    Get PDF
    Background: There is increasing evidence that phloroglucinol, a compound from Ecklonia cava, induces the apoptosis of cancer cells, eventually suppressing tumor angiogenesis. Methodology/Principal Findings: This is the first report on phloroglucinol’s ability to potentially inhibit the functional bioactivities of endothelial progenitor cells (EPCs) and thereby attenuate tumor growth and angiogenesis in the Lewis lung carcinoma (LLC)-tumor-bearing mouse model. Although Phloroglucinol did not affect their cell toxicity, it specifically inhibited vascular endothelial growth factor (VEGF) dependent migration and capillary-like tube formation of EPCs. Our matrigel plug assay clearly indicated that orally injected phloroglucinol effectively disrupts VEGF-induced neovessel formation. Moreover, we demonstrated that when phloroglucinol is orally administered, it significantly inhibits tumor growth and angiogenesis as well as CD45 2 /CD34 + progenitor mobilization into peripheral blood in vivo in the LLC-tumorbearing mouse model. Conclusions/Significance: These results suggest a novel role for phloroglucinol: Phloroglucinol might be a modulator of circulating EPC bioactivities, eventually suppressing tumorigenesis. Therefore, phloroglucinol might be a candidat
    corecore