1,851 research outputs found

    Genome-Based Construction of the Metabolic Pathways of Orientia tsutsugamushi and Comparative Analysis within the Rickettsiales Order

    Get PDF
    Orientia tsutsugamushi, the causative agent of scrub typhus, is an obligate intracellular bacterium that belongs to the order of Rickettsiales. Recently, we have reported that O. tsutsugamushi has a unique genomic structure, consisting of highly repetitive sequences, and suggested that it may provide valuable insight into the evolution of intracellular bacteria. Here, we have used genomic information to construct the major metabolic pathways of O. tsutsugamushi and performed a comparative analysis of the metabolic genes and pathways of O. tsutsugamushi with other members of the Rickettsiales order. While O. tsutsugamushi has the largest genome among the members of this order, mainly due to the presence of repeated sequences, its metabolic pathways have been highly streamlined. Overall, the metabolic pathways of O. tsutsugamushi were similar to Rickettsia but there were notable differences in several pathways including carbohydrate metabolism, the TCA cycle, and the synthesis of cell wall components as well as in the transport systems. Our results will provide a useful guide to the postgenomic analysis of O. tsutsugamushi and lead to a better understanding of the virulence and physiology of this intracellular pathogen

    Improvement of thermal hydrolysis rate of dichloroacetic acid using alcohol

    Get PDF
    Dichloroacetic acid (DCAA) is produced during the oxidation of trichloroethylene. It is also produced in drinking water treatment as a disinfection by-product. DCAA is a problem material, because of its toxicity. The objective of this research is to find the final products and the reaction pathway of the DCAA decomposition by hydrolysis, and to increase the hydrolysis rate. The removal of both chlorine atoms in DCAA structure was achieved with hydrolysis at around 75 °C, and the final products were oxalic acid and glycolic acid. The reaction pathway was the production of oxalic acid and glycolic acid from two glyoxylic acid molecules by Cannizzaro reaction after the glyoxylic acid production from dechlorination of DCAA with hydrolysis. The hydrolysis rate of DCAA was increased with the use of 90 1.140250e-268thanol solution as solvent. The activation energy of DCAA was about 80 kJ/mol in it, while it was around 105 kJ/mol in water

    One-dimensional manganese-cobalt oxide nanofibres as bi-functional cathode catalysts for rechargeable metal-air batteries

    Get PDF
    Rechargeable metal-air batteries are considered a promising energy storage solution owing to their high theoretical energy density. The major obstacles to realising this technology include the slow kinetics of oxygen reduction and evolution on the cathode (air electrode) upon battery discharging and charging, respectively. Here, we report non-precious metal oxide catalysts based on spinel-type manganese-cobalt oxide nanofibres fabricated by an electrospinning technique. The spinel oxide nanofibres exhibit high catalytic activity towards both oxygen reduction and evolution in an alkaline electrolyte. When incorporated as cathode catalysts in Zn-air batteries, the fibrous spinel oxides considerably reduce the discharge-charge voltage gaps (improve the round-trip efficiency) in comparison to the catalyst-free cathode. Moreover, the nanofibre catalysts remain stable over the course of repeated discharge-charge cycling; however, carbon corrosion in the catalyst/carbon composite cathode degrades the cycling performance of the batteries

    Isolation and characterization of differentially expressed genes in the mycelium and fruit body of Pleurotus ostreatus

    Get PDF
    The fruiting body of one of the most widely cultivated mushrooms, the oyster mushroom (Pleurotus ostreatus) is highly interesting, both commercially and scientifically. In the present study, we performed comparative proteomic profiling of P. ostreatus at two unique developmental stages; mycelium and fruit body, using two-dimensional gel electrophoresis (2-DE). Seven hundred fourteen (714) spots were detected and 29 spots (showing a high level of difference in their expressions) were identified by tandem mass spectrometry and basic local alignment search tool (BLAST) searching of an expressed sequence tag (EST) database of P. ostreatus. Among them, six proteins (putative fatty acid oxygenase, heat shock sks2, PriA homologue, Ap-1 like transcription factor YAP7, mung bean seed albumin, and C2H2 Zinc finger domain protein) and one protein (peroxisomal biogenesis factor 6) showed increased expression levels at the fruiting process and the mycelial stage, respectively. Through reverse transcriptase-polymerase chain reaction analysis, priA homologue and AP-1 like transcription factor yap7 showed gradually increased expression from mycelia to fruit body, whereas putative fatty acid oxygenase and heat shock protein sks2 were expressed only in the fruit body. These results provide useful information for future studies of mushroom development of P. ostreatus.Keywords: Developmental stage, mushroom fruiting, Pleurotus ostreatus, protein, two-dimensional gel electrophoresisAfrican Journal of Biotechnology Vol. 12(24), pp. 3790-379

    Orientia tsutsugamushi and Comparative Analysis within the Rickettsiales Order

    Get PDF
    Orientia tsutsugamushi, the causative agent of scrub typhus, is an obligate intracellular bacterium that belongs to the order of Rickettsiales. Recently, we have reported that O. tsutsugamushi has a unique genomic structure, consisting of highly repetitive sequences, and suggested that it may provide valuable insight into the evolution of intracellular bacteria. Here, we have used genomic information to construct the major metabolic pathways of O. tsutsugamushi and performed a comparative analysis of the metabolic genes and pathways of O. tsutsugamushi with other members of the Rickettsiales order. While O. tsutsugamushi has the largest genome among the members of this order, mainly due to the presence of repeated sequences, its metabolic pathways have been highly streamlined. Overall, the metabolic pathways of O. tsutsugamushi were similar to Rickettsia but there were notable differences in several pathways including carbohydrate metabolism, the TCA cycle, and the synthesis of cell wall components as well as in the transport systems. Our results will provide a useful guide to the postgenomic analysis of O. tsutsugamushi and lead to a better understanding of the virulence and physiology of this intracellular pathogen

    Mitochondria-targeted antioxidant MitoQ ameliorates experimental mouse colitis by suppressing NLRP3 inflammasome-mediated inflammatory cytokines

    Get PDF
    BACKGROUND: MitoQ is a mitochondria-targeted derivative of the antioxidant ubiquinone, with antioxidant and anti-apoptotic functions. Reactive oxygen species are involved in many inflammatory diseases including inflammatory bowel disease. In this study, we assessed the therapeutic effects of MitoQ in a mouse model of experimental colitis and investigated the possible mechanisms underlying its effects on intestinal inflammation. METHODS: Reactive oxygen species levels and mitochondrial function were measured in blood mononuclear cells of patients with inflammatory bowel disease. The effects of MitoQ were evaluated in a dextran sulfate sodium-induced colitis mouse model. Clinical and pathological markers of disease severity and oxidative injury, and levels of inflammatory cytokines in mouse colonic tissue were measured. The effect of MitoQ on inflammatory cytokines released in the human macrophage-like cell line THP-1 was also analyzed. RESULTS: Cellular and mitochondrial reactive oxygen species levels in mononuclear cells were significantly higher in patients with inflammatory bowel disease (P <0.003, cellular reactive oxygen species; P <0.001, mitochondrial reactive oxygen species). MitoQ significantly ameliorated colitis in the dextran sulfate sodium-induced mouse model in vivo, reduced the increased oxidative stress response (malondialdehyde and 3-nitrotyrosine formation), and suppressed mitochondrial and histopathological injury by decreasing levels of inflammatory cytokines IL-1 beta and IL-18 (P <0.001 and P <0.01 respectively). By decreasing mitochondrial reactive oxygen species, MitoQ also suppressed activation of the NLRP3 inflammasome that was responsible for maturation of IL-1 beta and IL-18. In vitro studies demonstrated that MitoQ decreases IL-1 beta and IL-18 production in human THP-1 cells. CONCLUSION: Taken together, our results suggest that MitoQ may have potential as a novel therapeutic agent for the treatment of acute phases of inflammatory bowel disease

    Role of Amphipathic Helix of a Herpesviral Protein in Membrane Deformation and T Cell Receptor Downregulation

    Get PDF
    Lipid rafts are membrane microdomains that function as platforms for signal transduction and membrane trafficking. Tyrosine kinase interacting protein (Tip) of T lymphotropic Herpesvirus saimiri (HVS) is targeted to lipid rafts in T cells and downregulates TCR and CD4 surface expression. Here, we report that the membrane-proximal amphipathic helix preceding Tip's transmembrane (TM) domain mediates lipid raft localization and membrane deformation. In turn, this motif directs Tip's lysosomal trafficking and selective TCR downregulation. The amphipathic helix binds to the negatively charged lipids and induces liposome tubulation, the TM domain mediates oligomerization, and cooperation of the membrane-proximal helix with the TM domain is sufficient for localization to lipid rafts and lysosomal compartments, especially the mutivesicular bodies. These findings suggest that the membrane-proximal amphipathic helix and TM domain provide HVS Tip with the unique ability to deform the cellular membranes in lipid rafts and to downregulate TCRs potentially through MVB formation

    Effects of intraoperative inspired oxygen fraction (FiO2 0.3 vs 0.8) on patients undergoing off-pump coronary artery bypass grafting: the CARROT multicenter, cluster-randomized trial

    Get PDF
    Background To maintain adequate oxygenation is of utmost importance in intraoperative care. However, clinical evidence supporting specific oxygen levels in distinct surgical settings is lacking. This study aimed to compare the effects of 30% and 80% oxygen in off-pump coronary artery bypass grafting (OPCAB). Methods This multicenter trial was conducted in three tertiary hospitals from August 2019 to August 2021. Patients undergoing OPCAB were cluster-randomized to receive either 30% or 80% oxygen intraoperatively, based on the month when the surgery was performed. The primary endpoint was the length of hospital stay. Intraoperative hemodynamic data were also compared. Results A total of 414 patients were cluster-randomized. Length of hospital stay was not different in the 30% oxygen group compared to the 80% oxygen group (median, 7.0 days vs 7.0 days; the sub-distribution hazard ratio, 0.98; 95% confidence interval [CI] 0.83–1.16; P = 0.808). The incidence of postoperative acute kidney injury was significantly higher in the 30% oxygen group than in the 80% oxygen group (30.7% vs 19.4%; odds ratio, 1.94; 95% CI 1.18–3.17; P = 0.036). Intraoperative time-weighted average mixed venous oxygen saturation was significantly higher in the 80% oxygen group (74% vs 64%; P < 0.001). The 80% oxygen group also had a significantly greater intraoperative time-weighted average cerebral regional oxygen saturation than the 30% oxygen group (56% vs 52%; P = 0.002). Conclusions In patients undergoing OPCAB, intraoperative administration of 80% oxygen did not decrease the length of hospital stay, compared to 30% oxygen, but may reduce postoperative acute kidney injury. Moreover, compared to 30% oxygen, intraoperative use of 80% oxygen improved oxygen delivery in patients undergoing OPCAB. Trial registration ClinicalTrials.gov (NCT03945565; April 8, 2019)
    corecore