Orientia tsutsugamushi, the causative agent of
scrub typhus, is an obligate intracellular
bacterium that belongs to the order of
Rickettsiales. Recently, we have reported that
O. tsutsugamushi has a unique
genomic structure, consisting of highly
repetitive sequences, and suggested that it may
provide valuable insight into the evolution of
intracellular bacteria. Here, we have used
genomic information to construct the major
metabolic pathways of
O. tsutsugamushi and performed a
comparative analysis of the metabolic genes and
pathways of O. tsutsugamushi
with other members of the Rickettsiales order.
While O. tsutsugamushi has the
largest genome among the members of this order,
mainly due to the presence of repeated
sequences, its metabolic pathways have been
highly streamlined. Overall, the metabolic
pathways of O. tsutsugamushi
were similar to Rickettsia but
there were notable differences in several
pathways including carbohydrate metabolism, the
TCA cycle, and the synthesis of cell wall
components as well as in the transport systems.
Our results will provide a useful guide to the
postgenomic analysis of
O. tsutsugamushi and lead
to a better understanding of the virulence and
physiology of this intracellular pathogen