34 research outputs found

    Regulation of cilia abundance in multiciliated cells

    Get PDF
    Multiciliated cells (MCC) contain hundreds of motile cilia used to propel fluid over their surface. To template these cilia, each MCC produces between 100-600 centrioles by a process termed centriole amplification. Yet, how MCC regulate the precise number of centrioles and cilia remains unknown. Airway progenitor cells contain two parental centrioles (PC) and form structures called deuterosomes that nucleate centrioles during amplification. Using an ex vivo airway culture model, we show that ablation of PC does not perturb deuterosome formation and centriole amplification. In contrast, loss of PC caused an increase in deuterosome and centriole abundance, highlighting the presence of a compensatory mechanism. Quantification of centriole abundance in vitro and in vivo identified a linear relationship between surface area and centriole number. By manipulating cell size, we discovered that centriole number scales with surface area. Our results demonstrate that a cell-intrinsic surface area-dependent mechanism controls centriole and cilia abundance in multiciliated cells

    Cell cycle progression and de novo centriole assembly after centrosomal removal in untransformed human cells

    Get PDF
    How centrosome removal or perturbations of centrosomal proteins leads to G1 arrest in untransformed mammalian cells has been a mystery. We use microsurgery and laser ablation to remove the centrosome from two types of normal human cells. First, we find that the cells assemble centrioles de novo after centrosome removal; thus, this phenomenon is not restricted to transformed cells. Second, normal cells can progress through G1 in its entirety without centrioles. Therefore, the centrosome is not a necessary, integral part of the mechanisms that drive the cell cycle through G1 into S phase. Third, we provide evidence that centrosome loss is, functionally, a stress that can act additively with other stresses to arrest cells in G1 in a p38-dependent fashion

    Catalytically inactive human cathepsin D triggers fibroblast invasive growth

    Get PDF
    The aspartyl-protease cathepsin D (cath-D) is overexpressed and hypersecreted by epithelial breast cancer cells and stimulates their proliferation. As tumor epithelial–fibroblast cell interactions are important events in cancer progression, we investigated whether cath-D overexpression affects also fibroblast behavior. We demonstrate a requirement of cath-D for fibroblast invasive growth using a three-dimensional (3D) coculture assay with cancer cells secreting or not pro-cath-D. Ectopic expression of cath-D in cath-D–deficient fibroblasts stimulates 3D outgrowth that is associated with a significant increase in fibroblast proliferation, survival, motility, and invasive capacity, accompanied by activation of the ras–MAPK pathway. Interestingly, all these stimulatory effects on fibroblasts are independent of cath-D proteolytic activity. Finally, we show that pro-cath-D secreted by cancer cells is captured by fibroblasts and partially mimics effects of transfected cath-D. We conclude that cath-D is crucial for fibroblast invasive outgrowth and could act as a key paracrine communicator between cancer and stromal cells, independently of its catalytic activity

    Control of daughter centriole formation by the pericentriolar material

    Get PDF
    Author Posting. © The Author(s), 2008. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Cell Biology 10 (2008): 322-328, doi:10.1038/ncb1694.Controlling the number of its centrioles is vital for the cell as supernumerary centrioles result in multipolar mitosis and genomic instability. Normally, just one daughter centriole forms on each mature (mother) centriole; however, a mother centriole can produce multiple daughters within a single cell cycle. The mechanisms that prevent centriole ‘overduplication’ are poorly understood. Here we use laser microsurgery to test the hypothesis that attachment of the daughter centriole to the wall of the mother inhibits formation of additional daughters. We show that physical removal of the daughter induces reduplication of the mother in Sarrested cells. Under conditions when multiple daughters simultaneously form on a single mother, all of these daughters must be removed to induce reduplication. Intriguingly, the number of daughter centrioles that form during reduplication does not always match the number of ablated daughter centrioles. We also find that exaggeration of the pericentriolar material (PCM) via overexpression of the PCM protein pericentrin in S-arrested CHO cells induces formation of numerous daughter centrioles. We propose that that the size of the PCM cloud associated with the mother centriole restricts the number of daughters that can form simultaneously.This work was supported by grants from the National Institutes of Health (GM GM59363) and the Human Frontiers Science Program (RGP0064). Construction of our laser microsurgery workstation was supported in part by a fellowship from Nikon/Marine Biological Laboratory (A.K.)

    Centriole biogenesis: a tale of two pathways

    No full text
    Two recent studies in Drosophila demonstrate that overexpression of proteins required for centriole duplication can not only induce centriole over-duplication in cells containing centrioles, but can also drive de novo centriole assembly in unfertilized eggs that initially lack centrioles. These studies offer a new perspective on the mechanisms that control centriole duplication

    With Age Comes Maturity: Biochemical and Structural Transformation of a Human Centriole in the Making

    No full text
    Centrioles are microtubule-based cellular structures present in most human cells that build centrosomes and cilia. Proliferating cells have only two centrosomes and this number is stringently maintained through the temporally and spatially controlled processes of centriole assembly and segregation. The assembly of new centrioles begins in early S phase and ends in the third G1 phase from their initiation. This lengthy process of centriole assembly from their initiation to their maturation is characterized by numerous structural and still poorly understood biochemical changes, which occur in synchrony with the progression of cells through three consecutive cell cycles. As a result, proliferating cells contain three structurally, biochemically, and functionally distinct types of centrioles: procentrioles, daughter centrioles, and mother centrioles. This age difference is critical for proper centrosome and cilia function. Here we discuss the centriole assembly process as it occurs in somatic cycling human cells with a focus on the structural, biochemical, and functional characteristics of centrioles of different ages

    PLK4 is a microtubule-associated protein that self assembles promoting de novo MTOC formation

    Get PDF
    The deposited article version is the Epub Ahead of Print version of the article (the "Accepted Manuscript"), posted online 20th September 2018, provided by Company of Biologists. It has peer-review.The deposited article version contains attached the supplementary materials within the pdf.The centrosome is an important microtubule-organizing centre (MTOC) in animal cells. It consists of two barrel-shaped structures, the centrioles, surrounded by the pericentriolar material (PCM), which nucleates microtubules. Centrosomes can form close to an existing structure (canonical duplication) or de novo How centrosomes form de novo is not known. The master driver of centrosome biogenesis, PLK4, is critical to recruit several centriole components. Here, we investigate the beginning of centrosome biogenesis, taking advantage of Xenopus egg extracts, where PLK4 can induce de novo MTOC formation (Eckerdt et al., 2011; Zitouni et al., 2016). Surprisingly, we observe that in vitro, PLK4 can self-assemble into condensates that recruit α/β-tubulin. In Xenopus extracts, PLK4 assemblies additionally recruit PLK4's substrate, STIL, and the microtubule nucleator, γ-tubulin, forming acentriolar MTOCs de novo The assembly of these robust microtubule asters is independent of dynein, similarly to centrosomes. We suggest a new mechanism of action for PLK4, where it forms a self-organizing catalytic scaffold that recruits centriole components, PCM factors and α/β-tubulin, leading to MTOC formation.We are thankful to Anna Akhmanova, Raquel Oliveira and Jeffrey B.Woodruff for reading and discussing the manuscript. We are also thankful to Catarina Nabais for the GFP control construct and Vladimir Joukov for the Xenopus Cep192 antibody. S.M.G was funded by an EMBO Long term fellowship ALTF 1088-2009, a Marie curie Intra-European fellowship (#253373) and a FCT postdoctoral fellowship. The collaboration with J.L. laboratory in the USA was supported by a The Company of Biologists travel grant. S.Z is funded by ERC grant ERC-COG-683258. Research in JL lab was supported by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research. M.B-D. Laboratory is supported by an ERC grant ERC-COG-683258 and FCT Investigator to MBD.info:eu-repo/semantics/acceptedVersio
    corecore