5 research outputs found

    Fluorescent IGF-II analogues for FRET-based investigations into the binding of IGF-II to the IGF-1R

    Get PDF
    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.The interaction of IGF-II with the insulin receptor (IR) and type 1 insulin-like growth factor receptor (IGF-1R) has recently been identified as potential therapeutic target for the treatment of cancer. Understanding the interactions of IGF-II with these receptors is required for the development of potential anticancer therapeutics. This work describes an efficient convergent synthesis of native IGF-II and two nonnative IGF-II analogues with coumarin fluorescent probes incorporated at residues 19 and 28. These fluorescent analogues bind with nanomolar affinities to the IGF-1R and are suitable for use in fluorescence resonance energy transfer (FRET) studies. From these studies the F19Cou IGF-II and F28Cou IGF-II proteins were identified as good probes for investigating the binding interactions of IGF-II with the IGF-1R and its other high affinity binding partners

    Copper binding and redox chemistry of the Aβ16 peptide and its variants: insights into determinants of copper-dependent reactivity

    Get PDF
    The metal-binding sites of Aβ peptides are dictated primarily by the coordination preferences of the metal ion. Consequently, Cu(I) is typically bound with two His ligands in a linear mode while Cu(II) forms a pseudo-square planar stereochemistry with the N-terminal amine nitrogen acting as an anchoring ligand. Several distinct combinations of other groups can act as co-ligands for Cu(II). A population of multiple binding modes is possible with the equilibrium position shifting sensitively with solution pH and the nature of the residues in the N-terminal region. This work examined the Cu(II) chemistry of the Aβ16 peptide and several variants that targeted these binding modes. The results are consistent with: (i) at pH < 7.8, the square planar site in CuII–Aβ16 consists primarily of a bidentate ligand provided by the carboxylate sidechain of Asp1 and the N-terminal amine supported by the imidazole sidechains of two His residues (designated here as component IA); it is in equilibrium with a less stable component IB in which the carboxylate ligand is substituted by the Asp1-Ala2 carbonyl oxygen. (ii) Both IA and IB convert to a common component II (apparent transition pKa ∼7.8 for IA and ∼6.5 for IB, respectively) featuring a tridentate ligand consisting of the N-terminal amine, the Asp1-Ala2 amide and the Ala2-Pro3 carbonyl; this stereochemistry is stabilized by two five-membered chelate rings. (iii) Component IA is stabilized for variant Aβ16-D1H, components I (both IA and IB) are imposed on Aβ16-A2P while the less stable IB is enforced on Aβ16-D1A (which is converted to component II at pH ∼6.5); (iv) components IA and IB share two His ligands with Cu(I) and are more reactive in redox catalysis than component II that features a highly covalent and less reactive amide N− ligand. The redox activity of IA is further enhanced for peptides with a His1 N-terminus that may act as a ligand for either Cu(I) or Cu(II) with lower re-organization energy required for redox-shuttling. This study provided insights into the determinants that regulate the reactivity of Cu–Aβ complexes

    Chemical synthesis of a fluorescent IGF-II analogue

    No full text
    Insulin-like growth factor II (IGF-II) is a protein with high structural and sequence similarity to insulin. Unlike insulin, it binds both the type 1 IGF receptor and the exon 11- isoform of the insulin receptor with high affinity. The overexpression and up regulation of IGF-II has been associated with the progression of various forms of cancer. The exact binding mechanism of IGF-II to its high affinity receptors is still not completely understood. Herein we describe the successful synthesis of a novel fluorescent IGF-II protein (F19Cou IGF-II), where residue 19 (phenylalanine) has been replaced by a fluorescent chromophore (coumaryl glycine). This novel coumaryl IGF-II analogue will be a useful tool for analysing the receptor interaction mechanisms in future studies.Jade M. Cottam, Denis B. Scanlon, John A. Karas, Antonio N. Calabrese, Tara L. Pukala, Briony E. Forbes, John C. Wallace, Andrew D. Abel
    corecore