635 research outputs found

    EXPERIMENTAL AND MODELING STUDY OF PARTICULATE MATTER OXIDATION UNDER LOADING CONDITIONS FOR A SCR CATALYST ON A DIESEL PARTICULATE FILTER

    Get PDF
    The heavy-duty diesel engines use a Diesel Oxidation Catalyst (DOC), a Catalyzed Particulate Filter (CPF), a Selective Catalytic Reduction (SCR) with urea injection and a Ammonia Oxidation Catalyst (AMOX), to meet the US EPA 2010/2013 particulate matter (PM) and NOx emission standards. However, it is not possible to achieve the 2015 California low NOx standards with this arrangement. Hence, there is a need to improve the existing aftertreatment system. This can be achieved by coating the SCR catalyst on a diesel particulate filter (DPF), thus combining the PM filtration and NOx reduction functionality into a single device. This reduces the overall volume/weight of the system and provides opportunity for packaging flexibility and improved thermal management along with the possibility of higher NOx reduction with a downstream SCR system. The SCR catalyst on a DPF used in this study is known as a SCRFÂŪ which was supplied by Johnson Matthey and Corning. Previous research on the CPF and SCRFÂŪ at MTU highlighted that the reactivity of PM retained in the CPF and SCRFÂŪ is higher during loading conditions compared to passive oxidation conditions i.e. when the flow rate of PM entering the CPF or SCRFÂŪ is higher in loading conditions compared to the low flow rate and higher PM reaction rate during passive oxidation conditions. A 2013 Cummins ISB engine with a DOC-SCRFÂŪ arrangement was used to perform twelve tests (eight tests without urea injection and four tests with urea injection) in order to determine the NO2 assisted passive oxidation performance of the SCRFÂŪ under loading conditions with and without urea injection. The primary focus of this study was to carry out Loading Tests with and without Urea injection and measure species concentrations, PM mass retained, exhaust flowrates, substrate temperature distributions, pressure drop across the filter, and to determine the kinetics of NO2 assisted PM oxidation under loading conditions and compare it with kinetics under passive oxidation conditions. The NO2 assisted passive oxidation performance of the SCRFÂŪ was experimentally studied by running the engine at 2400 RPM and four different loads at nominal and reduced rail pressure for 5.5 hours in two stages of loading. These conditions were intended to span the SCRFÂŪ inlet temperatures in the range of 264-364oC and inlet NO2 concentrations in the range of 52-120 ppm. Four conditions out of these eight conditions were repeated with the injection of urea in the form of diesel exhaust fluid at a target ammonia to NOx ratio of 1.0 to investigate both the NOx reduction performance, as well as the effect of urea on the NO2 assisted passive oxidation performance. From the conclusions of the study based on the experimental data, it was found that the cumulative percentage of PM oxidized in the SCRFÂŪ increases with the increase in engine load due to higher SCRFÂŪ temperatures and NO2 concentrations. On average, the reactions rates with urea injection during loading conditions in the SCRFÂŪ are 25% lower compared to the reaction rates without urea injection. The reactivity of PM under loading conditions with and without urea injection is higher compared to the reactivity of PM under passive oxidation with and without urea injection. For a lumped PM oxidation model, a higher pre-exponential for NO2 assisted oxidation is needed for loading as compared to passive oxidation conditions. It was not possible to determine the kinetics of NO2 assisted oxidation of PM under loading conditions from the experimental data using a standard Arrhenius model which lead to the development of a different model for PM oxidation. A PM oxidation model was developed based on the shrinking core model which keeps the identity of the incoming PM masses in the SCRFÂŪ as compared to SCR-F model being developed at MTU which is lumped model for PM oxidation. The PM oxidation model was calibrated to simulate PM oxidation in the SCRFÂŪ with a single set of kinetics under wide range of conditions including loading and passive oxidation conditions. The reaction rate results from the PM oxidation model were then applied to the SCR-F model to simulate the pressure drop across SCRFÂŪ and the PM retained in the SCRFÂŪ for the loading conditions used in this study. The SCR-F model was calibrated using experimental data from Loading Tests w/o Urea to simulate the PM retained within Âą2 g and pressure drop across SCRFÂŪ within Âą0.5 kPa of the experimental data at the end of the test. The calibrated SCR-F model was also used to estimate the cake, wall and channel pressure drop and the PM retained in the cake and wall for the Loading Tests w/o Urea to check the integrity of experimental data and the consistency of the model. The NO2 assisted kinetics for PM oxidation in the SCRFÂŪ without urea injection using the SCR-F model resulted in an activation energy of 96 kJ/gmol and pre-exponential factor of 2.6 m/K-s for the cake and 1.8 m/K-s for the wall. An analysis of the results from the SCR-F model suggests that for all the conditions, 84-92% of the total PM retained was in the PM cake layer and the oxidation in the PM cake layer accounted for 72-84% of the total PM mass oxidized during loading

    A Characterization of Absolutely Minimum Attaining operators

    Get PDF
    We study the spectral properties of positive absolutely minimum attaining operators defined on infinite dimensional complex Hilbert spaces and using that derive a characterization theorem for such type of operators. We construct several examples and discuss some of the properties of this class. Also, we extend this characterization theorem for general absolutely minimum attaining operators by means of the polar decomposition theorem

    A Quality Improvement project to initiate the Confusion Assessment Method (CAM) delirium screening tool at a Skilled Nursing Facility and Rehabilitation Center in East Tennessee.

    Get PDF
    A Quality Improvement project to initiate the Confusion Assessment Method (CAM) delirium screening tool at a Skilled Nursing Facility and Rehabilitation Center in East Tennessee -- by S. Joseph Jadav, Doctor of Nursing Practice Candidate at East Tennessee State University. Purpose/Aims: The aim of this project is to implement a delirium screening protocol in a skilled nursing and rehabilitation facility which will aid in early detection of signs and symptoms of delirium in older adults. This early detection followed by an early intervention can help reduce costs and decrease mortality rates with better outcomes. Processes: A CAM screening is conducted on each patient (male & female) for delirium for a period of four weeks. Data collection will comprise of the number of patients assessed and the total number of positive and negative delirium cases. It was determined that the proposed activity is not research involving human subjects according to United States Department of Health and Human Services (DHHS) regulations by the university’s Institutional Review Board (IRB). Results: The project is currently in the data collection phase. Limitations: Refusal to participate either by the patient or family in the screening. Conclusions: While nearly 80% of delirium cases in an acute care setting go undetected or undiagnosed, this project to implement a delirium screening protocol in a skilled nursing facility is even more imperative in early detection and early intervention

    āŠ­āŠūāŠ°āŠĪāŦ€āŠŊāŠĪāŠūāŠƒ āŠ—āŦāŠœāŠ°āŠūāŠĪāŦ€ āŠĻāŠĩāŠēāŠ•āŠĨāŠūāŠĻāŠū āŠļāŠ‚āŠĶāŠ°āŦāŠ­āŠŪāŠūāŠ‚

    Get PDF
    āŠĩāŠŋāŠķāŦāŠ°āŦāŠĩāŠŪāŠūāŠ‚ āŠ…āŠĻāŦ‡āŠ• āŠļāŠ‚āŠļāŦāŠ•āŦƒāŠĪāŠŋāŠ“ āŠ‰āŠĶāŦāŠ­āŠĩāŦ€ āŠ…āŠĻāŦ‡ āŠĻāŠūāŠķ āŠŠāŠūāŠŪāŦ€. āŠŠāŠ°āŠ‚āŠĪāŦ āŠ­āŠūāŠ°āŠĪāŦ€āŠŊ āŠļāŠ‚āŠļāŦāŠ•āŦƒāŠĪāŠŋ āŠ†āŠœāŦ‡ āŠļāŠĶāŦ€āŠ“āŠĨāŦ€ āŠŠāŦ‹āŠĪāŠūāŠĻāŦāŠ‚ āŠĪāŦ‡āŠœ āŠ…āŠĻāŦ‡ āŠŠāŠ°āŠ‚āŠŠāŠ°āŠū āŠœāŠūāŠģāŠĩāŠĪāŦ€ āŠ†āŠĩāŦ€ āŠ›āŦ‡. āŠ•āŠūāŠģāŠĻāŦ€ āŠĨāŠŠāŠūāŠŸāŦ‹ āŠĪāŦ‡āŠĻāŦ‡ āŠĄāŠ—āŠūāŠĩāŦ€ āŠķāŠ•āŦ€ āŠĻāŠĨāŦ€ āŠ•āŦ‡ āŠĪāŦ‡āŠĻāŦ‡ āŠĻāŦāŠ•āŦāŠķāŠūāŠĻ āŠ•āŠ°āŦ€ āŠķāŠ•āŦ€ āŠĻāŠĨāŦ€. āŠ•āŠūāŠģāŠĻāŦ€ āŠĨāŠŠāŠūāŠŸāŦ‹ āŠĪāŦ‡āŠĻāŦ‡ āŠĄāŠ—āŠūāŠĩāŦ€ āŠķāŠ•āŦ€ āŠĻāŠĨāŦ€ āŠ•āŦ‡ āŠĪāŦ‡āŠĻāŦ‡ āŠĻāŦāŠ•āŠķāŠūāŠĻ āŠ•āŠ°āŦ€ āŠķāŠ•āŦ€ āŠĻāŠĨāŦ€. āŠŠāŠ°āŠ‚āŠĪāŦ, āŠŠāŠ°āŠŋāŠĩāŠ°āŦāŠĪāŠĻāŠĻāŠū āŠ† āŠœāŠŪāŠūāŠĻāŠūāŠŪāŠūāŠ‚ āŠŊāŦ‹āŠ—āŦāŠŊ āŠđāŠ•āŠūāŠ°āŠūāŠĪāŦāŠŪāŠ• āŠŠāŠ°āŠŋāŠĩāŠ°āŦāŠĪāŠĻ āŠ†āŠĩāŦ‡ āŠĪāŦ‡ āŠœāŠ°āŦ‚āŠ°āŦ€ āŠ›āŦ‡. āŠĪāŦ‹ āŠœ āŠ†āŠŠāŠĢāŦ‡ āŠ†āŠŠāŠĢāŠū āŠĩāŠūāŠ°āŠļāŠūāŠĻāŦ‡ āŠķāŦāŠ§āŦāŠ§ āŠļāŦāŠĩāŠ°āŦ‚āŠŠāŦ‡ āŠœāŠūāŠģāŠĩāŦ€ āŠķāŠ•āŦ€āŠķāŦāŠ‚. āŠĩāŠŋāŠķāŦāŠ°āŦāŠĩāŠĻāŦ€ āŠ…āŠĻāŦ‡āŠ• āŠļāŠ‚āŠļāŦāŠ•āŦƒāŠĪāŠŋāŠ“ āŠŠāŦ‹āŠĪāŠūāŠĻāŠū āŠĩāŠūāŠ°āŠļāŠūāŠĻāŦ‡ āŠœāŠūāŠģāŠĩāŦ€ āŠ°āŠūāŠ–āŠĩāŠū āŠŪāŠūāŠŸāŦ‡ āŠĪāŠĨāŠū āŠĪāŦ‡āŠĻāŦāŠ‚ āŠļāŠ‚āŠ°āŠ•āŦāŠ·āŠĢ āŠ•āŠ°āŠĩāŠū āŠŪāŠūāŠŸāŦ‡ āŠœāŠūāŠĪ āŠœāŠūāŠĪāŠĻāŠū āŠŠāŦāŠ°āŠŊāŠĪāŦāŠĻāŦ‹ āŠ•āŠ°āŠĪāŦ€ āŠ°āŠđāŦ€ āŠ›āŦ‡. āŠ­āŠūāŠ°āŠĪāŦ€āŠŊāŠĪāŠūāŠĻāŦ‡ āŠ†āŠ§āŦāŠĻāŠŋāŠ•āŠĪāŠūāŠĻāŠū āŠĻāŠūāŠŪāŦ‡ āŠēāŦ‚āŠĢāŦ‹ āŠĻ āŠēāŠūāŠ—āŦ‡ āŠĪāŦ‡ āŠŪāŠūāŠŸāŦ‡ āŠĪāŠĨāŠū āŠ­āŠūāŠ°āŠĪāŦ€āŠŊāŠĪāŠūāŠĻāŠū āŠļāŠ‚āŠ°āŠ•āŦāŠ·āŠĢ āŠ…āŠ°āŦāŠĨāŦ‡ āŠ…āŠĻāŦ‡āŠ• āŠŠāŦāŠ°āŠŊāŠĪāŦāŠĻāŦ‹ āŠĨāŠˆ āŠ°āŠđāŦāŠŊāŠū āŠ›āŦ‡. āŠ­āŠūāŠ°āŠĪ āŠ…āŠĻāŦ‡ āŠĪāŦ‡āŠĻāŦ€ āŠ­āŠūāŠ°āŠĪāŦ€āŠŊāŠĪāŠūāŠĻāŦāŠ‚ āŠ–āŦ‹āŠŸāŦāŠ‚ āŠŪāŦ‚āŠēāŦāŠŊāŠūāŠ‚āŠ•āŠĻ āŠĻ āŠĨāŠūāŠŊ, āŠ†āŠŠāŠĢāŦ‹ āŠļāŠūāŠ‚āŠļāŦāŠ•āŦƒāŠĪāŠŋāŠ• āŠĩāŠūāŠ°āŠļāŦ‹ āŠĩāŠ§āŦ āŠļāŠŪāŦƒāŠ§āŦāŠ§ āŠŽāŠĻāŦ‡ āŠ…āŠĻāŦ‡ āŠĩāŠ°āŦāŠĪāŠŪāŠūāŠĻ āŠ†āŠ§āŦāŠĻāŠŋāŠ• āŠļāŠŪāŠŊāŠĻāŦ€ āŠ†āŠĄāŠ…āŠļāŠ°āŦ‹ āŠĪāŦ‡āŠĻāŦ‡ āŠĻ āŠļāŦāŠŠāŠ°āŦāŠķāŦ‡ āŠĪāŦ‡āŠĩāŠū āŠŠāŦāŠ°āŠŊāŠĪāŦāŠĻ āŠŠāŦ‚āŠ°āŦāŠĩāŠ•āŠĻāŠū āŠ†āŠķāŠŊāŠĨāŦ€ āŠ­āŠūāŠ°āŠĪāŦ€āŠŊāŠĪāŠūāŠĻāŦāŠ‚ āŠ§āŠūāŠ°āŦāŠŪāŠŋāŠ•, āŠ†āŠ§āŦāŠŊāŠŪāŠŋāŠ• āŠ…āŠĻāŦ‡ āŠŽāŦŒāŠ§āŦāŠ§āŠŋāŠ• āŠĪāŠĨāŠū āŠļāŠūāŠ‚āŠļāŦāŠ•āŦƒāŠĪāŠŋāŠ• āŠķāŦāŠ§āŦāŠ§ āŠļāŦāŠĩāŠ°āŦ‚āŠŠ āŠŠāŦāŠ°āŠ—āŠŸāŦ‡ āŠĪāŦ‡āŠĩāŦ‹ āŠŠāŦāŠ°āŠŊāŠĪāŦāŠĻ āŠĨāŠūāŠŊ āŠĪāŦ‡ āŠœāŠ°āŦ‚āŠ°āŦ€ āŠ›āŦ‡. āŠ­āŠūāŠ°āŠĪāŦ€āŠŊāŠĪāŠūāŠĻāŠū āŠķāŦāŠ§āŦāŠ§ āŠļāŦāŠĩāŠ°āŦ‚āŠŠāŠĻāŦ‡ āŠŠāŠūāŠ• – āŠŠāŠĩāŠŋāŠĪāŦāŠ° āŠ°āŦ‚āŠŠāŦ‡ āŠŠāŦāŠ°āŠ—āŠŸ āŠ•āŠ°āŠĩāŠū āŠŪāŠūāŠŸāŦ‡ āŠļāŠūāŠŪāŠūāŠœāŠŋāŠ• āŠ…āŠĻāŦ‡ āŠ§āŠūāŠ°āŦāŠŪāŠŋāŠ• āŠ•āŦāŠ·āŦ‡āŠĪāŦāŠ°āŠĻāŠūāŠ‚ āŠ…āŠĻāŦ‡āŠ• āŠļāŠ‚āŠ—āŠ āŠĻāŠūāŠĪāŦāŠŪāŠ• āŠ•āŦāŠ·āŦ‡āŠĪāŦāŠ°āŦ‹ āŠ•āŠūāŠŪ āŠ•āŠ°āŦ€ āŠ°āŠđāŦāŠŊāŠūāŠ‚ āŠđāŦ‹āŠŊ āŠĪāŦāŠŊāŠūāŠ°āŦ‡ āŠļāŠūāŠđāŠŋāŠĪāŦāŠŊāŠ•āŠūāŠ° āŠ•āŦ‡ āŠļāŠ°āŦāŠœāŠ• āŠ•āŦ‡āŠŪ āŠšāŦ‚āŠŠ āŠŽāŦ‡āŠļāŦ‡? āŠ§āŠ°āŦāŠŪāŠĻāŦ€ āŠœāŦ‡āŠŪ āŠļāŠūāŠđāŠŋāŠĪāŦāŠŊāŠŪāŠūāŠ‚ āŠŠāŠĢ āŠ­āŠūāŠ°āŠĪāŦ€āŠŊāŠĪāŠūāŠĻāŦāŠ‚ āŠļāŠ‚āŠĩāŠ°āŦāŠ§āŠĻ āŠļāŠ‚āŠ°āŠ•āŦāŠ·āŠĢ āŠŊāŦ‹āŠ—āŦāŠŊ āŠ°āŦ€āŠĪāŦ‡ āŠĨāŠūāŠŊ. āŠ–āŦ‹āŠŸāŠū āŠ–āŦāŠŊāŠūāŠēāŦ‹ – āŠŪāŠūāŠĻāŦāŠŊāŠĪāŠūāŠ“ āŠĶāŦ‚āŠ° āŠ•āŠ°āŦ€ āŠķāŦāŠ§āŦāŠ§ āŠļāŦāŠĩāŠ°āŦ‚āŠŠāŦ‡ āŠĪāŦ‡āŠĻāŦ‡ āŠŠāŦāŠ°āŠ—āŠŸ āŠ•āŠ°āŦ€ āŠ†āŠŠāŠĢāŠū āŠļāŠūāŠ‚āŠļāŦāŠ•āŦƒāŠĪāŠŋāŠ• āŠĩāŠūāŠ°āŠļāŠūāŠĻāŦ‡ āŠĩāŠ§āŦāŠĻāŦ‡ āŠĩāŠ§āŦ āŠļāŠŪāŦƒāŠ§āŦāŠ§ āŠ•āŠ°āŠĩāŠūāŠĻāŠū āŠķāŦāŠ§āŦāŠ§ āŠđāŦ‡āŠĪāŦāŠĨāŦ€ āŠ­āŠūāŠ°āŠĪāŦ€āŠŊ āŠļāŠ°āŦāŠœāŠ• āŠŠāŦ‹āŠĪāŠūāŠĻāŠū āŠļāŠūāŠđāŠŋāŠĪāŦāŠŊāŠĻāŦāŠ‚ āŠļāŠ°āŦāŠœāŠĻ āŠ•āŠ°āŠĪāŦ‹ āŠ°āŠđāŦāŠŊāŦ‹ āŠ›āŦ‡ āŠ…āŠĻāŦ‡ āŠĪāŠĪāŦāŠ•āŠūāŠēāŦ€āŠĻ āŠŠāŦāŠ°āŠ­āŠūāŠĩāŦ‹ āŠāŦ€āŠēāŠĪāŦ‹ āŠāŦ€āŠēāŠĪāŦ‹ āŠ­āŠūāŠ°āŠĪāŦ€āŠŊāŠĪāŠūāŠĻāŦ‡ āŠĻāŠŋāŠ°āŦ‚āŠŠāŠĪāŦ‹ āŠ†āŠĩāŦāŠŊāŦ‹ āŠ›āŦ‡. āŠŠāŦāŠ°āŠļāŦāŠĪāŦāŠĪ āŠķāŦ‹āŠ§ āŠ•āŠūāŠ°āŦāŠŊāŠĻāŦ‡ āŠŽāŦ‡ āŠ–āŠ‚āŠĄāŠŪāŠūāŠ‚ āŠĩāŠŋāŠ­āŠūāŠœāŠŋāŠĪ āŠ•āŠ°āŦāŠŊāŦāŠ‚ āŠ›āŦ‡. āŠŠāŦāŠ°āŠĨāŠŪ āŠ–āŠ‚āŠĄāŠŪāŠūāŠ‚ āŠ­āŠūāŠ°āŠĪāŦ€āŠŊāŠĪāŠūāŠĻāŦ€ āŠĩāŠŋāŠ­āŠūāŠĩāŠĻāŠūāŠĻāŦ‡ āŠĩāŠŋāŠļāŦāŠĪāŠūāŠ°āŠĨāŦ€ āŠŠāŦāŠ°āŠ—āŠŸ āŠ•āŠ°āŠĩāŠūāŠŪāŠūāŠ‚ āŠ†āŠĩāŦ€ āŠ›āŦ‡. āŠķāŦ‹āŠ§āŠ•āŠūāŠ°āŦāŠŊāŠĻāŠū āŠŽāŦ€āŠœāŠū āŠ–āŠ‚āŠĄāŠŪāŠūāŠ‚ āŠ—āŦāŠœāŠ°āŠūāŠĪāŦ€ āŠĻāŠĩāŠēāŠ•āŠĨāŠūāŠĻāŦ‡ āŠ­āŠūāŠ°āŠĪāŦ€āŠŊāŠĪāŠūāŠĻāŠū āŠļāŠ‚āŠĶāŠ°āŦāŠ­āŠŪāŠūāŠ‚ āŠĪāŠŠāŠūāŠļāŠĩāŠūāŠĻāŦ‹ āŠ‰āŠŠāŠ•āŦāŠ°āŠŪ āŠ›āŦ‡

    Target Point Manipulation Inside a Deformable Object

    Get PDF
    • â€Ķ
    corecore