13 research outputs found

    Polymorphisms in the transcription factor NRF2 and forearm vasodilator responses in humans

    Get PDF
    Oxidative stress is integral to the development of endothelial dysfunction and cardiovascular disease. As NRF2 is a key transcription factor in antioxidant defense, we aimed to determine whether polymorphisms within the promoter region of the gene encoding NRF2 (NFE2L2) would significantly modify vasodilator responses in humans

    Protective Role of Interleukin-10 in Ozone-Induced Pulmonary Inflammation

    Get PDF
    BackgroundThe mechanisms underlying ozone (O3)-induced pulmonary inflammation remain unclear. Interleukin-10 (IL-10) is an anti-inflammatory cytokine that is known to inhibit inflammatory mediators.ObjectivesWe investigated the molecular mechanisms underlying interleuken-10 (IL-10)–mediated attenuation of O3-induced pulmonary inflammation in mice.MethodsIl10-deficient (Il10−/−) and wild-type (Il10+/+) mice were exposed to 0.3 ppm O3 or filtered air for 24, 48, or 72 hr. Immediately after exposure, differential cell counts and total protein (a marker of lung permeability) were assessed from bronchoalveolar lavage fluid (BALF). mRNA and protein levels of cellular mediators were determined from lung homogenates. We also used global mRNA expression analyses of lung tissue with Ingenuity Pathway Analysis to identify patterns of gene expression through which IL-10 modifies O3-induced inflammation.ResultsMean numbers of BALF polymorphonuclear leukocytes (PMNs) were significantly greater in Il10−/− mice than in Il10+/+ mice after exposure to O3 at all time points tested. O3-enhanced nuclear NF-κB translocation was elevated in the lungs of Il10−/− compared with Il10+/+ mice. Gene expression analyses revealed several IL-10–dependent and O3-dependent mediators, including macrophage inflammatory protein 2, cathepsin E, and serum amyloid A3.ConclusionsResults indicate that IL-10 protects against O3-induced pulmonary neutrophilic inflammation and cell proliferation. Moreover, gene expression analyses identified three response pathways and several genetic targets through which IL-10 may modulate the innate and adaptive immune response. These novel mechanisms of protection against the pathogenesis of O3-induced pulmonary inflammation may also provide potential therapeutic targets to protect susceptible individuals

    Determinants of host susceptibility to murine respiratory syncytial virus (RSV) disease identify a role for the innate immunity scavenger receptor MARCO gene in human infants

    Get PDF
    AbstractBackgroundRespiratory syncytial virus (RSV) is the global leading cause of lower respiratory tract infection in infants. Nearly 30% of all infected infants develop severe disease including bronchiolitis, but susceptibility mechanisms remain unclear.MethodsWe infected a panel of 30 inbred strains of mice with RSV and measured changes in lung disease parameters 1 and 5days post-infection and they were used in genome-wide association (GWA) studies to identify quantitative trait loci (QTL) and susceptibility gene candidates.FindingsGWA identified QTLs for RSV disease phenotypes, and the innate immunity scavenger receptor Marco was a candidate susceptibility gene; targeted deletion of Marco worsened murine RSV disease. We characterized a human MARCO promoter SNP that caused loss of gene expression, increased in vitro cellular response to RSV infection, and associated with increased risk of disease severity in two independent populations of children infected with RSV.InterpretationTranslational integration of a genetic animal model and in vitro human studies identified a role for MARCO in human RSV disease severity. Because no RSV vaccines are approved for clinical use, genetic studies have implications for diagnosing individuals who are at risk for severe RSV disease, and disease prevention strategies (e.g. RSV antibodies)

    The discovery BPD (D-BPD) program: Study protocol of a prospective translational multicenter collaborative study to investigate determinants of chronic lung disease in very low birth weight infants

    Get PDF
    Background: Premature birth is a growing and serious public health problem affecting more than one of every ten infants worldwide. Bronchopulmonary dysplasia (BPD) is the most common neonatal morbidity associated with prematurity and infants with BPD suffer from increased incidence of respiratory infections, asthma, other forms of chronic lung illness, and death (Day and Ryan, Pediatr Res 81: 210-213, 2017; Isayama et la., JAMA Pediatr 171:271-279, 2017). BPD is now understood as a longitudinal disease process influenced by the intrauterine environment during gestation and modulated by gene-environment interactions throughout the neonatal and early childhood periods. Despite of this concept, there remains a paucity of multidisciplinary team-based approaches dedicated to the comprehensive study of this complex disease. Methods: The Discovery BPD (D-BPD) Program involves a cohort of infants < 1,250 g at birth prospectively followed until 6 years of age. The program integrates analysis of detailed clinical data by machine learning, genetic susceptibility and molecular translation studies. Discussion: The current gap in understanding BPD as a complex multi-trait spectrum of different disease endotypes will be addressed by a bedside-to-bench and bench-to-bedside approach in the D-BPD program. The D-BPD will provide enhanced understanding of mechanisms, evolution and consequences of lung diseases in preterm infants. The D-BPD program represents a unique opportunity to combine the expertise of biologists, neonatologists, pulmonologists, geneticists and biostatisticians to examine the disease process from multiple perspectives with a singular goal of improving outcomes of premature infants. Trial registration: Does not apply for this study.Fil: Ofman, Gaston. University of Alabama at Birmingahm; Estados UnidosFil: Caballero, Mauricio Tomás. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Álvarez Paggi, Damián Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Marzec, Jacqui. National Institute of Environmental Health Sciences; Estados UnidosFil: Nowogrodzki, Florencia. No especifíca;Fil: Cho, Hye Youn. National Institute of Environmental Health Sciences; Estados UnidosFil: Sorgetti, Mariana. No especifíca;Fil: Colantonio, Guillermo. No especifíca;Fil: Bianchi, Alejandra. No especifíca;Fil: Prudent, Luis M.. Fundación para la Salud Materno Infantil; ArgentinaFil: Vain, Néstor Eduardo. Fundación para la Salud Materno Infantil; Argentina. Sanatorio de la Trinidad Palermo.; ArgentinaFil: Mariani, Gonzalo Luis. Hospital Italiano; ArgentinaFil: Digregorio, Jorge. Sanatorio de la Trinidad Palermo.; ArgentinaFil: Lopez Turconi, Elba. No especifíca;Fil: Osio, Cristina. Sanatorio "Otamendi y Miroli S. A."; ArgentinaFil: Galletti, Maria Fernanda. Hospital Italiano; ArgentinaFil: Quiros, Mariangeles. Clinica y Maternidad Suizo Argentina; ArgentinaFil: Brum, Andrea. Sanatorio de la Trinidad Palermo.; ArgentinaFil: Lopez Garcia, Santiago. No especifíca;Fil: Garcia, Silvia. Sanatorio "Otamendi y Miroli S. A."; ArgentinaFil: Bell, Douglas. National Institute of Environmental Health Sciences; Estados UnidosFil: Jones, Marcus H.. Pontificia Universidade Católica do Rio Grande do Sul; BrasilFil: Tipple, Trent E.. University of Alabama at Birmingahm; Estados UnidosFil: Kleeberger, Steven R.. National Institute of Environmental Health Sciences; Estados UnidosFil: Polack, Fernando Pedro. University of Alabama at Birmingahm; Estados Unido

    IL18 and IL18R1 polymorphisms, lung CT and fibrosis: A longitudinal study in coal miners.

    No full text
    It has been suggested that interleukin (IL)-18 plays a role in the development of inflammatory and fibrosing lung diseases. Associations of polymorphisms in the genes coding for IL-18 (IL18 /G-656T, C-607A, G-137C, T113G, C127T) and its receptor (IL18R1 /C-69T) with coal workers' pneumoconiosis (CWP) were studied in 200 miners who were examined in 1990, 1994 and 1999. Coal-dust exposure was assessed according to job history and ambient measures. The main health outcome was lung computed tomography (CT) score in 1990. Internal coherence was assessed by studying CT score in 1994, 4-yr change in CT score and CWP incidence and prevalence. CT score in 1990 was a good predictor of radiographic grade in 1999 and, therefore, an appropriate subclinical quantitative trait. The IL18 -137C allele was associated with lower CT score in 1990 and 1994 (1.24 versus 1.69 and 1.57 versus 2.46, respectively), slower progression of CT score between 1990 and 1994 and lower pneumoconiosis prevalence in 1999 relative to the G allele (0.33 versus 0.77 and 8.2 versus 19.6%, respectively). Smoking- or dust-adjustment, and stratification on IL18R1 genotype and adjustment for haplotype effects did not change the conclusions. In conclusion, the results of the present study suggest a role for IL18 in reducing the development of this fibrosing lung disease

    Polymorphisms in the transcription factor NRF2 and forearm vasodilator responses in humans

    No full text
    OBJECTIVE: Oxidative stress is integral to the development of endothelial dysfunction and cardiovascular disease. As NRF2 is a key transcription factor in antioxidant defense, we aimed to determine whether polymorphisms within the promoter region of the gene encoding NRF2 (NFE2L2) would significantly modify vasodilator responses in humans. METHODS: Associations between the – 653A/G (rs35652124), – 651G/A (rs6706649), and – 617C/A (rs6721961) polymorphisms within the NFE2L2 promoter and vascular function were evaluated in healthy African-American (n= 64) and white (n= 184) individuals. Forearm blood flow (FBF) was measured by strain-gauge venous occlusion plethysmography at baseline and in response to incremental doses of bradykinin or sodium nitroprusside. Forearm vascular resistance (FVR) was calculated as the mean arterial pressure/FBF. RESULTS: In African Americans, – 653G variant allele carriers had significantly lower FBF and higher FVR under basal conditions as well as in response to bradykinin or sodium nitroprusside compared with wild-type individuals (P< 0.05 for each comparison). In whites, although no significant associations were observed with the – 653A/G genotype, – 617A variant allele carriers had significantly higher FVR at baseline and in response to bradykinin or sodium nitroprusside compared with wild-type individuals (P < 0.05 for each comparison). The – 651G/A polymorphism was not associated with vasodilator responses in either racial group. CONCLUSION: Polymorphisms within the NFE2L2 promoter were associated with impaired forearm vasodilator responses in an endothelial-independent manner, suggesting an important role of NRF2 in the regulation of vascular function in humans

    Determinants of host susceptibility to murine respiratory syncytial virus (RSV) disease identify a role for the innate immunity scavenger receptor MARCO gene in human infants

    Get PDF
    Background: Respiratory syncytial virus (RSV) is the global leading cause of lower respiratory tract infection in infants. Nearly 30% of all infected infants develop severe disease including bronchiolitis, but susceptibility mechanisms remain unclear. Methods: We infected a panel of 30 inbred strains of mice with RSV and measured changes in lung disease parameters 1 and 5 days post-infection and they were used in genome-wide association (GWA) studies to identify quantitative trait loci (QTL) and susceptibility gene candidates. Findings: GWA identified QTLs for RSV disease phenotypes, and the innate immunity scavenger receptor Marco was a candidate susceptibility gene; targeted deletion of Marco worsened murine RSV disease. We characterized a human MARCO promoter SNP that caused loss of gene expression, increased in vitro cellular response to RSV infection, and associated with increased risk of disease severity in two independent populations of children infected with RSV. Interpretation Translational integration of a genetic animal model and in vitro human studies identified a role for MARCO in human RSV disease severity. Because no RSV vaccines are approved for clinical use, genetic studies have implications for diagnosing individuals who are at risk for severe RSV disease, and disease prevention strategies (e.g. RSV antibodies)
    corecore