180 research outputs found
Test of the isotopic and velocity selectivity of a lithium atom interferometer by magnetic dephasing
A magnetic field gradient applied to an atom interferometer induces a
-dependent phase shift which results in a series of decays and revivals of
the fringe visibility. Using our lithium atom interferometer based on Bragg
laser diffraction, we have measured the fringe visibility as a function of the
applied gradient. We have thus tested the isotopic selectivity of the
interferometer, the velocity selective character of Bragg diffraction for
different diffraction orders as well as the effect of optical pumping of the
incoming atoms. All these observations are qualitatively understood but a
quantitative analysis requires a complete model of the interferometer
Phase noise due to vibrations in Mach-Zehnder atom interferometers
Atom interferometers are very sensitive to accelerations and rotations. This
property, which has some very interesting applications, induces a deleterious
phase noise due to the seismic noise of the laboratory and this phase noise is
sufficiently large to reduce the fringe visibility in many experiments. We
develop a model calculation of this phase noise in the case of Mach-Zehnder
atom interferometers and we apply this model to our thermal lithium
interferometer. We are able to explain the observed phase noise which has been
detected through the rapid dependence of the fringe visibility with the
diffraction order. We think that the dynamical model developed in the present
paper should be very useful to reduce the vibration induced phase noise in atom
interferometers, making many new experiments feasible
First measurements of the index of refraction of gases for lithium atomic waves
We report here the first measurements of the index of refraction of gases for
lithium waves. Using an atom interferometer, we have measured the real and
imaginary part of the index of refraction for argon, krypton and xenon, as
a function of the gas density for several velocities of the lithium beam. The
linear dependence of with the gas density is well verified. The total
collision cross-section deduced from the imaginary part is in very good
agreement with traditional measurements of this quantity. Finally, as predicted
by theory, the real and imaginary parts of and their ratio
exhibit glory oscillations
Atom interferometry measurement of the electric polarizability of lithium
Using an atom interferometer, we have measured the static electric
polarizability of Li m atomic units with a 0.66% uncertainty. Our experiment, which
is similar to an experiment done on sodium in 1995 by D. Pritchard and
co-workers, consists in applying an electric field on one of the two
interfering beams and measuring the resulting phase-shift. With respect to D.
Pritchard's experiment, we have made several improvements which are described
in detail in this paper: the capacitor design is such that the electric field
can be calculated analytically; the phase sensitivity of our interferometer is
substantially better, near 16 mrad/; finally our interferometer is
species selective it so that impurities present in our atomic beam (other
alkali atoms or lithium dimers) do not perturb our measurement. The extreme
sensitivity of atom interferometry is well illustrated by our experiment: our
measurement amounts to measuring a slight increase of the atom
velocity when it enters the electric field region and our present
sensitivity is sufficient to detect a variation .Comment: 14 page
Anomalous cooling of the parallel velocity in seeded beams
We have measured the parallel velocity distribution of a lithium supersonic
beam produced by seeding lithium in argon. The parallel temperature for lithium
is considerably lower than the calculated parallel temperature of the argon
carrier gas. We have extended the theory of supersonic cooling to calculate the
parallel temperature of the seeded gas, in the limit of high dilution. The
theoretical result thus obtained is in good agreement with ourobservations.Comment: 01 june 200
Parallel Temperatures in Supersonic Beams: Ultra Cooling of Light Atoms seeded in a Heavier Carrier Gas
We have found recently that, in a supersonic expansion of a mixture of two
monoatomic gases, the parallel temperatures of the two gases can be very
different. This effect is large if the seeded gas is highly diluted and if its
atomic mass is considerably smaller than the one of the carrier gas. In the
present paper, we present a complete derivation of our theoretical analysis of
this effect. Our calculation is a natural extension of the existing theory of
supersonic cooling to the case of a gas mixture, in the high dilution limit.
Finally, we describe a set of temperature measurements made on a beam of
lithium seeded in argon. Our experimental results are in very good agreement
with the results of our calculation.Comment: 24 novembre 200
Planetary Science Virtual Observatory architecture
In the framework of the Europlanet-RI program, a prototype of Virtual
Observatory dedicated to Planetary Science was defined. Most of the activity
was dedicated to the elaboration of standards to retrieve and visualize data in
this field, and to provide light procedures to teams who wish to contribute
with on-line data services. The architecture of this VO system and selected
solutions are presented here, together with existing demonstrators
The EPN-TAP protocol for the Planetary Science Virtual Observatory
A Data Access Protocol has been set up to search and retrieve Planetary
Science data in general. This protocol will allow the user to select a subset
of data from an archive in a standard way, based on the IVOA Table Access
Protocol (TAP). The TAP mechanism is completed by an underlying Data Model and
reference dictionaries. This paper describes the principle of the EPN- TAP
protocol and interfaces, underlines the choices that have been made, and
discusses possible evolutions.Comment: 21 pages. Submitted to Astronomy & Computing, S.I. Virtual
Observator
Assessment of the particle radiation environment at L1 and near-Earth space
We investigated the particle radiation environment at the Lagrangian point L1 and in the near-Earth space by performing a systematic analysis of the proton ïŹux data recorded by the EPAM and CPME particle instruments, aboard ACE and IMP-8 in the energy range âŒ0.05-5 MeV and 0.29-440 MeV, respectively. We computed the cumulative distribution functions for all the energy channels of each instrument and studied the radiation variation with respect to solar activity. We obtained energetic proton spectra at 90% cumulative probability for diïŹerent time periods and determined the worst case scenario, which can be used for operational purposes of the ATHENA mission and for Space Weather related hazards
- âŠ