21 research outputs found

    The material properties of a bacterial-derived biomolecular condensate tune biological function in natural and synthetic systems

    Get PDF
    Intracellular phase separation is emerging as a universal principle for organizing biochemical reactions in time and space. It remains incompletely resolved how biological function is encoded in these assemblies and whether this depends on their material state. The conserved intrinsically disordered protein PopZ forms condensates at the poles of the bacterium Caulobacter crescentus, which in turn orchestrate cell-cycle regulating signaling cascades. Here we show that the material properties of these condensates are determined by a balance between attractive and repulsive forces mediated by a helical oligomerization domain and an expanded disordered region, respectively. A series of PopZ mutants disrupting this balance results in condensates that span the material properties spectrum, from liquid to solid. A narrow range of condensate material properties supports proper cell division, linking emergent properties to organismal fitness. We use these insights to repurpose PopZ as a modular platform for generating tunable synthetic condensates in human cells

    CRISPR/Cas9 screen in human iPSC‐derived cortical neurons identifies NEK6 as a novel disease modifier of C9orf72 poly(PR) toxicity

    Get PDF
    Introduction The most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are hexanucleotide repeats in chromosome 9 open reading frame 72 (C9orf72). These repeats produce dipeptide repeat proteins with poly(PR) being the most toxic one. Methods We performed a kinome-wide CRISPR/Cas9 knock-out screen in human induced pluripotent stem cell (iPSC) -derived cortical neurons to identify modifiers of poly(PR) toxicity, and validated the role of candidate modifiers using in vitro, in vivo, and ex-vivo studies. Results Knock-down of NIMA-related kinase 6 (NEK6) prevented neuronal toxicity caused by poly(PR). Knock-down of nek6 also ameliorated the poly(PR)-induced axonopathy in zebrafish and NEK6 was aberrantly expressed in C9orf72 patients. Suppression of NEK6 expression and NEK6 activity inhibition rescued axonal transport defects in cortical neurons from C9orf72 patient iPSCs, at least partially by reversing p53-related DNA damage. Discussion We identified NEK6, which regulates poly(PR)-mediated p53-related DNA damage, as a novel therapeutic target for C9orf72 FTD/ALS

    Diversity and community structure of ericoid mycorrhizal fungi in European bogs and heathlands across a gradient of nitrogen deposition

    No full text
    Despite the ecological significance of ericoid mycorrhizal fungi, little is known about the abiotic and biotic factors driving their diversity and community composition. To determine the relative importance of abiotic and biotic filtering in structuring ericoid mycorrhizal fungal communities, we established 156 sampling plots in two highly contrasting environments but dominated by the same Ericaceae plant species: waterlogged bogs and dry heathlands. Plots were located across 25 bogs and 27 dry heathlands in seven European countries covering a gradient in nitrogen deposition and phosphorus availability. Putatively ericoid mycorrhizal fungal communities in the roots of 10 different Ericaceae species were characterized using high-throughput amplicon sequencing. Variation in ericoid mycorrhizal fungal communities was attributed to both habitat and soil variables on the one hand and host plant identity on the other. Communities differed significantly between bogs and heathlands and, in a given habitat, communities differed significantly among host plant species. Fungal richness was negatively related to nitrogen deposition in bogs and phosphorus availability in bogs and heathlands. Our results demonstrate that both abiotic and biotic filtering shapes ericoid mycorrhizal fungal communities and advocate an environmental policy minimizing excess nutrient input in these nutrient-poor ecosystems to avoid loss of ericoid mycorrhizal fungal taxa.status: publishe

    CRISPR-Cas9 recognition of enzymatically synthesized base-modified nucleic acids

    No full text
    An enzymatic method has been successfully established enabling the generation of partially base-modified RNA (previously named RZA) constructs, in which all G residues were replaced by isomorphic fluorescent thienoguanosine ((th)G) analogs, as well as fully modified RZA featuring (th)G, 5-bromocytosine, 7-deazaadenine and 5-chlorouracil. The transcriptional efficiency of emissive fully modified RZA was found to benefit from the use of various T7 RNA polymerase variants. Moreover, d(th)G could be incorporated into PCR products by Taq DNA polymerase together with the other three base-modified nucleotides. Notably, the obtained RNA products containing (th)G as well as (th)G together with 5-bromocytosine could function as effectively as natural sgRNAs in an in vitro CRISPR-Cas9 cleavage assay. N-1-Methylpseudouridine was also demonstrated to be a faithful non-canonical substitute of uridine to direct Cas9 nuclease cleavage when incorporated in sgRNA. The Cas9 inactivation by 7-deazapurines indicated the importance of the 7-nitrogen atom of purines in both sgRNA and PAM site for achieving efficient Cas9 cleavage. Additional aspects of this study are discussed in relation to the significance of sgRNA-protein and PAM--protein interactions that were not highlighted by the Cas9-sgRNA-DNA complex crystal structure. These findings could expand the impact and therapeutic value of CRISPR-Cas9 and other RNA-based technologies. Lay Summary With the advent of CRISPR-Cas9 gene editing, we now have to hand a simple two-component system amendable to silencing and knock-in editing effectively any gene. Yet we must not forget that the implications of immunotoxicity along with the poor stability and specificity of canonical nucleic acids hold enormous challenges for in vivo applications, especially in gene therapy. Our study endorses the feasibility of the enzymatic approach to incorporate nucleobase modifications into the CRISPR-Cas9 system unveiling the tolerance of Cas9 to N-1-methylpseudouridine (m1 psi)- and emissive thienoguanosine ((th)G)-modified sgRNA as well as thus far uncharted structural requirements for ensuring proper PAM recognition

    Abiotic rather than biotic filtering shapes the arbuscular mycorrhizal fungal communities of European semi-natural grasslands

    No full text
    Although it is well known that arbuscular mycorrhizal fungi (AMF) play a key role in the functioning of natural ecosystems, the underlying drivers determining the composition of AMF communities remain unclear. In this study, we established 138 sampling plots at 46 grassland sites, consisting of 26 acidic grasslands and 20 calcareous grasslands spread across eight European countries, to assess the relative importance of abiotic and biotic filtering in driving AMF community composition and structure in both the grassland soils and in the roots of 13 grassland plant species. Soil AMF communities differed significantly between acidic and calcareous grasslands. In root AMF communities, most variance was attributable to soil variables while very little variation was explained by host plant identity. Root AMF communities in host plant species occurring in only one grassland type closely resembled the soil AMF communities of that grassland type and the root AMF communities of other host plant species occurring in the same grassland type. The observed AMF-host plants networks were not modular but nested. Our results indicate that abiotic conditions, rather than biotic filtering through host plant specificity, are the most important drivers in shaping AMF communities in European seminatural grasslands.status: publishe

    Target identification of small molecules using large-scale CRISPR-Cas mutagenesis scanning of essential genes

    Get PDF
    Unraveling the mechanism of action and molecular target of small molecules remains a major challenge in drug discovery. While many cancer drugs target genetic vulnerabilities, loss-of-function screens fail to identify essential genes in drug mechanism of action. Here, we report CRISPRres, a CRISPR-Cas-based genetic screening approach to rapidly derive and identify drug resistance mutations in essential genes. It exploits the local genetic variation created by CRISPR-Cas-induced non-homologous end-joining (NHEJ) repair to generate a wide variety of functional in-frame mutations. Using large sgRNA tiling libraries and known drug-target pairs, we validate it as a target identification approach. We apply CRISPRres to the anticancer agent KPT-9274 and identify nicotinamide phosphoribosyltransferase (NAMPT) as its main target. These results present a powerful and simple genetic approach to create many protein variants that, in combination with positive selection, can be applied to reveal the cellular target of small-molecule inhibitors.status: publishe

    Human exportin-1 is a target for combined therapy of HIV and AIDS related lymphoma

    Get PDF
    Infection with HIV ultimately leads to advanced immunodeficiency resulting in an increased incidence of cancer. For example primary effusion lymphoma (PEL) is an aggressive non-Hodgkin lymphoma with very poor prognosis that typically affects HIV infected individuals in advanced stages of immunodeficiency. Here we report on the dual anti-HIV and anti-PEL effect of targeting a single process common in both diseases. Inhibition of the exportin-1 (XPO1) mediated nuclear transport by clinical stage orally bioavailable small molecule inhibitors (SINE) prevented the nuclear export of the late intron-containing HIV RNA species and consequently potently suppressed viral replication. In contrast, in CRISPR-Cas9 genome edited cells expressing mutant C528S XPO1, viral replication was unaffected upon treatment, clearly demonstrating the anti-XPO1 mechanism of action. At the same time, SINE caused the nuclear accumulation of p53 tumor suppressor protein as well as inhibition of NF-ÎșB activity in PEL cells resulting in cell cycle arrest and effective apoptosis induction. In vivo, oral administration arrested PEL tumor growth in engrafted mice. Our findings provide strong rationale for inhibiting XPO1 as an innovative strategy for the combined anti-retroviral and anti-neoplastic treatment of HIV and PEL and offer perspectives for the treatment of other AIDS-associated cancers and potentially other virus-related malignancies.publisher: Elsevier articletitle: Human Exportin-1 is a Target for Combined Therapy of HIV and AIDS Related Lymphoma journaltitle: EBioMedicine articlelink: http://dx.doi.org/10.1016/j.ebiom.2015.07.041 content_type: article copyright: Copyright © 2015 Published by Elsevier B.V.status: publishe

    The second-generation exportin-1 inhibitor KPT-8602 demonstrates potent activity against acute lymphoblastic leukemia

    No full text
    Human exportin-1 (XPO1) is the key nuclear-cytoplasmic transport protein that exports many cargo proteins out of the nucleus. Inducing nuclear accumulation of these proteins by inhibition of XPO1 causes cancer cell death. First clinical validation of pharmacological inhibition of XPO1 was obtained with the Selective Inhibitor of Nuclear Export (SINE) compound selinexor (KPT-330) demonstrating activity in Phase-II/IIb clinical trials when dosed 1 - 3 times weekly. The second-generation SINE compound KPT-8602 shows improved tolerability and can be dosed daily. Here we investigate and validate the drug-target interaction of KPT-8602 and explore its activity against acute lymphoblastic leukemia (ALL).status: publishe
    corecore