8 research outputs found
Lung structure phenotype variation in inbred mouse strains revealed through in vivo micro-CT imaging
Within pulmonary research, the development of mouse models has provided insight into disease development, progression, and treatment. Structural phenotypes of the lung in healthy inbred mouse strains are necessary for comparison to disease models. To date, progress in the assessment of lung function in these small animals using whole lung function tests has been made. However, assessment of in vivo lung structure of inbred mouse strains has yet to be well defined. Therefore, the link between the structure and function phenotypes is still unclear. With advancements in small animal imaging it is now possible to investigate lung structures such as the central and peripheral airways, whole lung, and lobar volumes of mice in vivo, through the use of micro-CT imaging. In this study, we performed in vivo micro-CT imaging of the C57BL/6, A/J, and BALB/c mouse strains using the intermittent iso-pressure breath hold (IIBH) technique. The resulting high-resolution images were used to extract lung structure phenotypes. The three-dimensional lobar structures and airways were defined and a meaningful mouse airway nomenclature was developed. In addition, using these techniques we have uncovered significant differences in the airway structures between inbred mouse strains in vivo
Recommended from our members
Reflectance Confocal Microscopy for the Diagnosis of Eosinophilic Esophagitis: a Pilot Study Conducted on Biopsy Specimens
Background: Diagnosis of eosinophilic esophagitis (EoE) currently requires endoscopic biopsy and histopathologic analysis of the biopsy specimens to count intraepithelial eosinophils. Reflectance confocal microscopy (RCM) is an endomicroscopy technology that is capable of obtaining high-resolution, optically sectioned images of esophageal mucosa without the administration of exogenous contrast. Objective: In this study, we investigated the capability of a high-speed form of RCM, termed spectrally encoded confocal microscopy (SECM), to count intraepithelial esophageal eosinophils and characterize other microscopic findings of EoE. Design: A total of 43 biopsy samples from 35 pediatric patients and 8 biopsy samples from 8 adult patients undergoing EGD for EoE were imaged by SECM immediately after their removal and then processed for routine histopathology. Two SECM readers, trained on adult cases, prospectively counted intraepithelial eosinophils and detected the presence of abscess, degranulation, and basal cell hyperplasia on SECM images from the pediatric patients. A pathologist blinded to the SECM data analyzed the same from corresponding slides. Setting: The Gastrointestinal Unit, Massachusetts General Hospital. Results: Eosinophils by SECM demonstrated a higher reflectance than the surrounding cells and other inflammatory cells. There was good correlation between SECM and histology maximum eosinophil counts/high-power field (R = 0.76, P < .0001). Intra- and interobserver correlations for SECM counts were very good (R = 0.93 and R = 0.92, respectively; P < .0001). For the commonly used eosinophil count cutoff of 15 per high-power field, the sensitivity and specificity of SECM for EoE were 100%. The sensitivity and specificity for abscess, degranulation, and basal cell hyperplasia were 100% and 82%, 91% and 60%, and 94% and 80%, respectively. Intra- and interobserver agreements for these microscopic features of EoE were very good (κ = 0.9/0.9, 0.84/1.0, 0.91/0.81, respectively). Limitation: Ex vivo study. Conclusions: This study demonstrates that RCM can be used to accurately count intraepithelial eosinophils and identify other microscopic abnormalities associated with EoE on freshly excised biopsy samples. These findings suggest that RCM may be developed into a tool for assessing eosinophilic infiltration in the esophagus in vivo