275 research outputs found

    Can Charisma Be Taught? Tests of Two Interventions

    Get PDF
    We tested whether we could teach individuals to behave more charismatically, andwhether changes in charisma affected leader outcomes. In Study 1, a mixed-design fieldexperiment, we randomly assigned 34 middle-level managers to a control or anexperimental group. Three months later, we reassessed the managers using theircoworker ratings (Time 1 raters = 343; Time 2 raters = 321). In Study 2, a within-subjectslaboratory experiment, we videotaped 41 MBA participants giving a speech. We thentaught them how to behave more charismatically, and they redelivered the speech6 weeks later. Independent assessors (n = 135) rated the speeches. Results from thestudies indicated that the training had significant effects on ratings of leader charisma(mean D = .62) and that charisma had significant effects on ratings of leaderprototypicality and emergence...............................................................................................................................

    Individuals responses to economic cycles: Organizational relevance and a multilevel theoretical integration

    Get PDF

    Joint searches by FACT, H.E.S.S., MAGIC and VERITAS for VHE gamma-ray emission associated with neutrinos detected by IceCube

    Get PDF
    The sources of the astrophysical flux of high-energy neutrinos detected by IceCube are still largely unknown, but searches for temporal and spatial correlation between neutrinos and electromagnetic radiation are a promising approach in this endeavor. All major imaging atmospheric Cherenkov telescopes (IACTs) - FACT, H.E.S.S., MAGIC, and VERITAS - operate an active follow-up program of target-of-opportunity observations of neutrino alerts issued by IceCube. These programs use several complementary neutrino alert streams. A publicly distributed alert stream is formed by individual high-energy neutrino candidate events of potentially astrophysical origin, such as IceCube-170922A (which could be linked to the flaring blazar TXS 0506+056). A privately distributed alert stream is formed by clusters of neutrino events in time and space around either pre-selected gamma-ray sources or anywhere in the sky. Here, we present joint searches for multi-wavelength emission associated with a set of IceCube alerts, both private and public, received through mid-January 2021. We will give an overview of the programs of the participating IACTs. We will showcase the various follow-up and data analysis strategies employed in response to the different alert types and various possible counterpart scenarios. Finally, we will present results from a combined analysis of the VHE gamma-ray observations obtained across all involved instruments, as well as relevant multi-wavelength data

    Search for Continuous and Transient Neutrino Emission Associated with IceCube’s Highest-energy Tracks: An 11 yr Analysis

    Get PDF

    Search for 10–1000 GeV Neutrinos from Gamma-Ray Bursts with IceCube

    Get PDF
    We present the results of a search for 10–1000 GeV neutrinos from 2268 gamma-ray bursts (GRBs) over 8 yr of IceCube-DeepCore data. This work probes burst physics below the photosphere where electromagnetic radiation cannot escape. Neutrinos of tens of giga electronvolts are predicted in sub-photospheric collision of free-streaming neutrons with bulk-jet protons. In a first analysis, we searched for the most significant neutrino-GRB coincidence using six overlapping time windows centered on the prompt phase of each GRB. In a second analysis, we conducted a search for a group of GRBs, each individually too weak to be detectable, but potentially significant when combined. No evidence of neutrino emission is found for either analysis. The most significant neutrino coincidence is for Fermi-GBM GRB bn 140807500, with a p-value of 0.097 corrected for all trials. The binomial test used to search for a group of GRBs had a p-value of 0.65 after all trial corrections. The binomial test found a group consisting only of GRB bn 140807500 and no additional GRBs. The neutrino limits of this work complement those obtained by IceCube at tera electronvolt to peta electronvolt energies. We compare our findings for the large set of GRBs as well as GRB 221009A to the sub-photospheric neutron-proton collision model and find that GRB 221009A provides the most constraining limit on baryon loading. For a jet Lorentz factor of 300 (800), the baryon loading on GRB 221009A is lower than 3.85 (2.13) at a 90% confidence level

    Constraining High-energy Neutrino Emission from Supernovae with IceCube

    Get PDF
    Core-collapse supernovae are a promising potential high-energy neutrino source class. We test for correlation between seven years of IceCube neutrino data and a catalog containing more than 1000 core-collapse supernovae of types IIn and IIP and a sample of stripped-envelope supernovae. We search both for neutrino emission from individual supernovae as well as for combined emission from the whole supernova sample, through a stacking analysis. No significant spatial or temporal correlation of neutrinos with the cataloged supernovae was found. All scenarios were tested against the background expectation and together yield an overall p-value of 93%; therefore, they show consistency with the background only. The derived upper limits on the total energy emitted in neutrinos are 1.7 × 1048^{48} erg for stripped-envelope supernovae, 2.8 × 1048^{48} erg for type IIP, and 1.3 × 1049^{49} erg for type IIn SNe, the latter disfavoring models with optimistic assumptions for neutrino production in interacting supernovae. We conclude that stripped-envelope supernovae and supernovae of type IIn do not contribute more than 14.6% and 33.9%, respectively, to the diffuse neutrino flux in the energy range of about [ 103^3–105^5] GeV, assuming that the neutrino energy spectrum follows a power-law with an index of −2.5. Under the same assumption, we can only constrain the contribution of type IIP SNe to no more than 59.9%. Thus, core-collapse supernovae of types IIn and stripped-envelope supernovae can both be ruled out as the dominant source of the diffuse neutrino flux under the given assumptions

    Search for Extended Sources of Neutrino Emission in the Galactic Plane with IceCube

    Full text link
    The Galactic plane, harboring a diffuse neutrino flux, is a particularly interesting target to study potential cosmic-ray acceleration sites. Recent gamma-ray observations by HAWC and LHAASO have presented evidence for multiple Galactic sources that exhibit a spatially extended morphology and have energy spectra continuing beyond 100 TeV. A fraction of such emission could be produced by interactions of accelerated hadronic cosmic rays, resulting in an excess of high-energy neutrinos clustered near these regions. Using 10 years of IceCube data comprising track-like events that originate from charged-current muon neutrino interactions, we perform a dedicated search for extended neutrino sources in the Galaxy. We find no evidence for time-integrated neutrino emission from the potential extended sources studied in the Galactic plane. The most significant location, at 2.6σ\sigma post-trials, is a 1.7^\circ sized region coincident with the unidentified TeV gamma-ray source 3HWC J1951+266. We provide strong constraints on hadronic emission from several regions in the Galaxy.Comment: 13 pages, 4 figures, 5 tables including an appendix. Accepted for publication in Astrophysical Journa

    Search for Extended Sources of Neutrino Emission in the Galactic Plane with IceCube

    Get PDF

    Measurement of atmospheric neutrino mixing with improved IceCube DeepCore calibration and data processing

    Get PDF
    We describe a new data sample of IceCube DeepCore and report on the latest measurement of atmospheric neutrino oscillations obtained with data recorded between 2011–2019. The sample includes significant improvements in data calibration, detector simulation, and data processing, and the analysis benefits from a sophisticated treatment of systematic uncertainties, with significantly greater level of detail since our last study. By measuring the relative fluxes of neutrino flavors as a function of their reconstructed energies and arrival directions we constrain the atmospheric neutrino mixing parameters to be sin2θ23=0.51±0.05 and Δm232=2.41±0.07×10−3  eV2, assuming a normal mass ordering. The errors include both statistical and systematic uncertainties. The resulting 40% reduction in the error of both parameters with respect to our previous result makes this the most precise measurement of oscillation parameters using atmospheric neutrinos. Our results are also compatible and complementary to those obtained using neutrino beams from accelerators, which are obtained at lower neutrino energies and are subject to different sources of uncertainties

    Improved modeling of in-ice particle showers for IceCube event reconstruction

    Get PDF
    The IceCube Neutrino Observatory relies on an array of photomultiplier tubes to detect Cherenkov light produced by charged particles in the South Pole ice. IceCube data analyses depend on an in-depth characterization of the glacial ice, and on novel approaches in event reconstruction that utilize fast approximations of photoelectron yields. Here, a more accurate model is derived for event reconstruction that better captures our current knowledge of ice optical properties. When evaluated on a Monte Carlo simulation set, the median angular resolution for in-ice particle showers improves by over a factor of three compared to a reconstruction based on a simplified model of the ice. The most substantial improvement is obtained when including effects of birefringence due to the polycrystalline structure of the ice. When evaluated on data classified as particle showers in the high-energy starting events sample, a significantly improved description of the events is observed.Comment: 28 pages, 18 figures, 1 table, submitted to JINST, updated to account for comments receive
    corecore