5,697 research outputs found

    How New York City Reduced Mass Incarceration: A Model for Change?

    Get PDF
    In this report, leading criminologists examine the connection between New York City's shift in policing strategies and the dramatic decrease in the City's incarcerated and correctional population

    Look No Further: Adapting the Localization Sensory Window to the Temporal Characteristics of the Environment

    Full text link
    Many localization algorithms use a spatiotemporal window of sensory information in order to recognize spatial locations, and the length of this window is often a sensitive parameter that must be tuned to the specifics of the application. This letter presents a general method for environment-driven variation of the length of the spatiotemporal window based on searching for the most significant localization hypothesis, to use as much context as is appropriate but not more. We evaluate this approach on benchmark datasets using visual and Wi-Fi sensor modalities and a variety of sensory comparison front-ends under in-order and out-of-order traversals of the environment. Our results show that the system greatly reduces the maximum distance traveled without localization compared to a fixed-length approach while achieving competitive localization accuracy, and our proposed method achieves this performance without deployment-time tuning.Comment: Pre-print of article appearing in 2017 IEEE Robotics and Automation Letters. v2: incorporated reviewer feedbac

    A framework for the contextual analysis of computer-based learning environments

    Get PDF

    Rhythmic Representations: Learning Periodic Patterns for Scalable Place Recognition at a Sub-Linear Storage Cost

    Full text link
    Robotic and animal mapping systems share many challenges and characteristics: they must function in a wide variety of environmental conditions, enable the robot or animal to navigate effectively to find food or shelter, and be computationally tractable from both a speed and storage perspective. With regards to map storage, the mammalian brain appears to take a diametrically opposed approach to all current robotic mapping systems. Where robotic mapping systems attempt to solve the data association problem to minimise representational aliasing, neurons in the brain intentionally break data association by encoding large (potentially unlimited) numbers of places with a single neuron. In this paper, we propose a novel method based on supervised learning techniques that seeks out regularly repeating visual patterns in the environment with mutually complementary co-prime frequencies, and an encoding scheme that enables storage requirements to grow sub-linearly with the size of the environment being mapped. To improve robustness in challenging real-world environments while maintaining storage growth sub-linearity, we incorporate both multi-exemplar learning and data augmentation techniques. Using large benchmark robotic mapping datasets, we demonstrate the combined system achieving high-performance place recognition with sub-linear storage requirements, and characterize the performance-storage growth trade-off curve. The work serves as the first robotic mapping system with sub-linear storage scaling properties, as well as the first large-scale demonstration in real-world environments of one of the proposed memory benefits of these neurons.Comment: Pre-print of article that will appear in the IEEE Robotics and Automation Letter

    Practical improvements to class group and regulator computation of real quadratic fields

    Get PDF
    We present improvements to the index-calculus algorithm for the computation of the ideal class group and regulator of a real quadratic field. Our improvements consist of applying the double large prime strategy, an improved structured Gaussian elimination strategy, and the use of Bernstein's batch smoothness algorithm. We achieve a significant speed-up and are able to compute the ideal class group structure and the regulator corresponding to a number field with a 110-decimal digit discriminant
    corecore