5,697 research outputs found
How New York City Reduced Mass Incarceration: A Model for Change?
In this report, leading criminologists examine the connection between New York City's shift in policing strategies and the dramatic decrease in the City's incarcerated and correctional population
Look No Further: Adapting the Localization Sensory Window to the Temporal Characteristics of the Environment
Many localization algorithms use a spatiotemporal window of sensory
information in order to recognize spatial locations, and the length of this
window is often a sensitive parameter that must be tuned to the specifics of
the application. This letter presents a general method for environment-driven
variation of the length of the spatiotemporal window based on searching for the
most significant localization hypothesis, to use as much context as is
appropriate but not more. We evaluate this approach on benchmark datasets using
visual and Wi-Fi sensor modalities and a variety of sensory comparison
front-ends under in-order and out-of-order traversals of the environment. Our
results show that the system greatly reduces the maximum distance traveled
without localization compared to a fixed-length approach while achieving
competitive localization accuracy, and our proposed method achieves this
performance without deployment-time tuning.Comment: Pre-print of article appearing in 2017 IEEE Robotics and Automation
Letters. v2: incorporated reviewer feedbac
Rhythmic Representations: Learning Periodic Patterns for Scalable Place Recognition at a Sub-Linear Storage Cost
Robotic and animal mapping systems share many challenges and characteristics:
they must function in a wide variety of environmental conditions, enable the
robot or animal to navigate effectively to find food or shelter, and be
computationally tractable from both a speed and storage perspective. With
regards to map storage, the mammalian brain appears to take a diametrically
opposed approach to all current robotic mapping systems. Where robotic mapping
systems attempt to solve the data association problem to minimise
representational aliasing, neurons in the brain intentionally break data
association by encoding large (potentially unlimited) numbers of places with a
single neuron. In this paper, we propose a novel method based on supervised
learning techniques that seeks out regularly repeating visual patterns in the
environment with mutually complementary co-prime frequencies, and an encoding
scheme that enables storage requirements to grow sub-linearly with the size of
the environment being mapped. To improve robustness in challenging real-world
environments while maintaining storage growth sub-linearity, we incorporate
both multi-exemplar learning and data augmentation techniques. Using large
benchmark robotic mapping datasets, we demonstrate the combined system
achieving high-performance place recognition with sub-linear storage
requirements, and characterize the performance-storage growth trade-off curve.
The work serves as the first robotic mapping system with sub-linear storage
scaling properties, as well as the first large-scale demonstration in
real-world environments of one of the proposed memory benefits of these
neurons.Comment: Pre-print of article that will appear in the IEEE Robotics and
Automation Letter
Practical improvements to class group and regulator computation of real quadratic fields
We present improvements to the index-calculus algorithm for the computation
of the ideal class group and regulator of a real quadratic field. Our
improvements consist of applying the double large prime strategy, an improved
structured Gaussian elimination strategy, and the use of Bernstein's batch
smoothness algorithm. We achieve a significant speed-up and are able to compute
the ideal class group structure and the regulator corresponding to a number
field with a 110-decimal digit discriminant
Recommended from our members
Education as a Complex System: Conceptual and Methodological Implications
Education is a complex system, which has conceptual and methodological implications for education research and policy. In this article, an overview is first provided of the Complex Systems Conceptual Framework for Learning (CSCFL), which consists of a set of conceptual perspectives that are generally shared by educational complex systems, organized into two focus areas: collective behaviors of a system, and behaviors of individual agents in a system. Complexity and research methodologies for education are then considered, and it is observed that commonly used quantitative and qualitative techniques are generally appropriate for studying linear dynamics of educational systems. However, it is proposed that computational modeling approaches, being extensively used for studying nonlinear characteristics of complex systems in other fields, can provide a methodological complement to quantitative and qualitative education research approaches. Two research case studies of this approach are discussed. We conclude with a consideration of how viewing education as a complex system using complex systems’ conceptual and methodological tools can help advance education research and also inform policy
- …
