581 research outputs found
Gravitational Duality in MacDowell-Mansouri Gauge Theory
Strong-weak duality invariance can only be defined for particular sectors of
supersymmetric Yang-Mills theories. Nevertheless, for full non-Abelian
non-supersymmetric theories, dual theories with inverted couplings, have been
found. We show that an analogous procedure allows to find the dual action to
the gauge theory of gravity constructed by the MacDowell-Mansouri model plus
the superposition of a term.Comment: 9 pages, LaTeX, no figure
Classical and Quantum Nambu Mechanics
The classical and quantum features of Nambu mechanics are analyzed and
fundamental issues are resolved. The classical theory is reviewed and developed
utilizing varied examples. The quantum theory is discussed in a parallel
presentation, and illustrated with detailed specific cases. Quantization is
carried out with standard Hilbert space methods. With the proper physical
interpretation, obtained by allowing for different time scales on different
invariant sectors of a theory, the resulting non-Abelian approach to quantum
Nambu mechanics is shown to be fully consistent.Comment: 44 pages, 1 figure, 1 table Minor changes to conform to journal
versio
The three-dimensional structure of Saturn's E ring
Saturn's diffuse E ring consists of many tiny (micron and sub-micron) grains
of water ice distributed between the orbits of Mimas and Titan. Various
gravitational and non-gravitational forces perturb these particles' orbits,
causing the ring's local particle density to vary noticeably with distance from
the planet, height above the ring-plane, hour angle and time. Using
remote-sensing data obtained by the Cassini spacecraft in 2005 and 2006, we
investigate the E-ring's three-dimensional structure during a time when the Sun
illuminated the rings from the south at high elevation angles (> 15 degrees).
These observations show that the ring's vertical thickness grows with distance
from Enceladus' orbit and its peak brightness density shifts from south to
north of Saturn's equator plane with increasing distance from the planet. These
data also reveal a localized depletion in particle density near Saturn's
equatorial plane around Enceladus' semi-major axis. Finally, variations are
detected in the radial brightness profile and the vertical thickness of the
ring as a function of longitude relative to the Sun. Possible physical
mechanisms and processes that may be responsible for some of these structures
include solar radiation pressure, variations in the ambient plasma, and
electromagnetic perturbations associated with Saturn's shadow.Comment: 42 Pages, 13 Figures, modified to include minor proof correction
Reimagining Creolization: the deep history of cultural interactions in the Windward Islands, Lesser Antilles, through the lens of material culture
Seventh Framework Programme (FP7)Archaeology of the America
Re-examining the relationship between audiometric profile and tinnitus pitch
Objective: We explored the relationship between audiogram shape and tinnitus pitch to answer questions arising from neurophysiological models of tinnitus: ‘Is the dominant tinnitus pitch associated with the edge of hearing loss?’ and ‘Is such a relationship more robust in people with narrow tinnitus bandwidth or steep sloping hearing loss?’ Design: A broken-stick fitting objectively quantified slope, degree and edge of hearing loss up to 16 kHz. Tinnitus pitch was characterized up to 12 kHz. We used correlation and multiple regression analyses for examining relationships with many potentially predictive audiometric variables. Study Sample: 67 people with chronic bilateral tinnitus (43 men and 24 women, aged from 22 to 81 years). Results: In this ample of 67 subjects correlation failed to reveal any relationship between the tinnitus pitch and the edge frequency. The tinnitus pitch generally fell within the area of hearing loss. The pitch of the tinnitus in a subset of subjects with a narrow tinnitus bandwidth (n = 23) was associated with the audiometric edge. Conclusions: Our findings concerning subjects with narrow tinnitus bandwidth suggest that this can be used as an a priori inclusion criterion. A large group of such subjects should be tested to confirm these results
On Deformations of n-Lie algebras
The aim of this paper is to review the deformation theory of -Lie
algebras. We summarize the 1-parameter formal deformation theory and provide a
generalized approach using any unital commutative associative algebra as a
deformation base. Moreover, we discuss degenerations and quantization of
-Lie algebras.Comment: Proceeding of the conference Dakar's Workshop in honor of Pr Amin
Kaidi. arXiv admin note: text overlap with arXiv:hep-th/9602016 by other
author
Linking the trans-Planckian and the information loss problems in black hole physics
The trans-Planckian and information loss problems are usually discussed in
the literature as separate issues concerning the nature of Hawking radiation.
Here we instead argue that they are intimately linked, and can be understood as
"two sides of the same coin" once it is accepted that general relativity is an
effective field theory.Comment: 10 pages, 2 figures. Replaced with the version to be published in
General Relativity and Gravitatio
Black Hole Microstates and Attractor Without Supersymmetry
Due to the attractor mechanism, the entropy of an extremal black hole does
not vary continuously as we vary the asymptotic values of various moduli
fields. Using this fact we argue that the entropy of an extremal black hole in
string theory, calculated for a range of values of the asymptotic moduli for
which the microscopic theory is strongly coupled, should match the statistical
entropy of the same system calculated for a range of values of the asymptotic
moduli for which the microscopic theory is weakly coupled. This argument does
not rely on supersymmetry and applies equally well to nonsupersymmetric
extremal black holes. We discuss several examples which support this argument
and also several caveats which could invalidate this argument.Comment: 50 pages; references adde
The Seven-sphere and its Kac-Moody Algebra
We investigate the seven-sphere as a group-like manifold and its extension to
a Kac-Moody-like algebra. Covariance properties and tensorial composition of
spinors under are defined. The relation to Malcev algebras is
established. The consequences for octonionic projective spaces are examined.
Current algebras are formulated and their anomalies are derived, and shown to
be unique (even regarding numerical coefficients) up to redefinitions of the
currents. Nilpotency of the BRST operator is consistent with one particular
expression in the class of (field-dependent) anomalies. A Sugawara construction
is given.Comment: 22 pages. Macropackages used: phyzzx, epsf. Three epsf figure files
appende
The Hamiltonian of Einstein affine-metric formulation of General Relativity
It is shown that the Hamiltonian of the Einstein affine-metric (first order)
formulation of General Relativity (GR) leads to a constraint structure that
allows the restoration of its unique gauge invariance, four-diffeomorphism,
without the need of any field dependent redefinition of gauge parameters as is
the case for the second order formulation. In the second order formulation of
ADM gravity the need for such a redefinition is the result of the non-canonical
change of variables [arXiv: 0809.0097]. For the first order formulation, the
necessity of such a redefinition "to correspond to diffeomorphism invariance"
(reported by Ghalati [arXiv: 0901.3344]) is just an artifact of using the
Henneaux-Teitelboim-Zanelli ansatz [Nucl. Phys. B 332 (1990) 169], which is
sensitive to the choice of linear combination of tertiary constraints. This
ansatz cannot be used as an algorithm for finding a gauge invariance, which is
a unique property of a physical system, and it should not be affected by
different choices of linear combinations of non-primary first class
constraints. The algorithm of Castellani [Ann. Phys. 143 (1982) 357] is free
from such a deficiency and it leads directly to four-diffeomorphism invariance
for first, as well as for second order Hamiltonian formulations of GR. The
distinct role of primary first class constraints, the effect of considering
different linear combinations of constraints, the canonical transformations of
phase-space variables, and their interplay are discussed in some detail for
Hamiltonians of the second and first order formulations of metric GR. The first
order formulation of Einstein-Cartan theory, which is the classical background
of Loop Quantum Gravity, is also discussed.Comment: 74 page
- …