11,471 research outputs found

    Rate theory for correlated processes: Double-jumps in adatom diffusion

    Get PDF
    We study the rate of activated motion over multiple barriers, in particular the correlated double-jump of an adatom diffusing on a missing-row reconstructed Platinum (110) surface. We develop a Transition Path Theory, showing that the activation energy is given by the minimum-energy trajectory which succeeds in the double-jump. We explicitly calculate this trajectory within an effective-medium molecular dynamics simulation. A cusp in the acceptance region leads to a sqrt{T} prefactor for the activated rate of double-jumps. Theory and numerical results agree

    Unraveling the acoustic electron-phonon interaction in graphene

    Get PDF
    Using a first-principles approach we calculate the acoustic electron-phonon couplings in graphene for the transverse (TA) and longitudinal (LA) acoustic phonons. Analytic forms of the coupling matrix elements valid in the long-wavelength limit are found to give an almost quantitative description of the first-principles based matrix elements even at shorter wavelengths. Using the analytic forms of the coupling matrix elements, we study the acoustic phonon-limited carrier mobility for temperatures 0-200 K and high carrier densities of 10^{12}-10^{13} cm^{-2}. We find that the intrinsic effective acoustic deformation potential of graphene is \Xi_eff = 6.8 eV and that the temperature dependence of the mobility \mu ~ T^{-\alpha} increases beyond an \alpha = 4 dependence even in the absence of screening when the full coupling matrix elements are considered. The large disagreement between our calculated deformation potential and those extracted from experimental measurements (18-29 eV) indicates that additional or modified acoustic phonon-scattering mechanisms are at play in experimental situations.Comment: 7 pages, 3 figure

    Partly Occupied Wannier Functions

    Get PDF
    We introduce a scheme for constructing partly occupied, maximally localized Wannier functions (WFs) for both molecular and periodic systems. Compared to the traditional occupied WFs the partly occupied WFs posses improved symmetry and localization properties achieved through a bonding-antibonding closing procedure. We demonstrate the equivalence between bonding-antibonding closure and the minimization of the average spread of the WFs in the case of a benzene molecule and a linear chain of Pt atoms. The general applicability of the method is demonstrated through the calculation of WFs for a metallic system with an impurity: a Pt wire with a hydrogen molecular bridge.Comment: 5 pages, 4 figure

    Exact enumeration of Hamiltonian circuits, walks, and chains in two and three dimensions

    Get PDF
    We present an algorithm for enumerating exactly the number of Hamiltonian chains on regular lattices in low dimensions. By definition, these are sets of k disjoint paths whose union visits each lattice vertex exactly once. The well-known Hamiltonian circuits and walks appear as the special cases k=0 and k=1 respectively. In two dimensions, we enumerate chains on L x L square lattices up to L=12, walks up to L=17, and circuits up to L=20. Some results for three dimensions are also given. Using our data we extract several quantities of physical interest

    Simulations of energetic beam deposition: from picoseconds to seconds

    Full text link
    We present a new method for simulating crystal growth by energetic beam deposition. The method combines a Kinetic Monte-Carlo simulation for the thermal surface diffusion with a small scale molecular dynamics simulation of every single deposition event. We have implemented the method using the effective medium theory as a model potential for the atomic interactions, and present simulations for Ag/Ag(111) and Pt/Pt(111) for incoming energies up to 35 eV. The method is capable of following the growth of several monolayers at realistic growth rates of 1 monolayer per second, correctly accounting for both energy-induced atomic mobility and thermal surface diffusion. We find that the energy influences island and step densities and can induce layer-by-layer growth. We find an optimal energy for layer-by-layer growth (25 eV for Ag), which correlates with where the net impact-induced downward interlayer transport is at a maximum. A high step density is needed for energy induced layer-by-layer growth, hence the effect dies away at increased temperatures, where thermal surface diffusion reduces the step density. As part of the development of the method, we present molecular dynamics simulations of single atom-surface collisions on flat parts of the surface and near straight steps, we identify microscopic mechanisms by which the energy influences the growth, and we discuss the nature of the energy-induced atomic mobility

    Geometric accuracy analysis of worlddem in relation to AW3D30, srtm and aster GDEM2

    Get PDF
    In a project area close to Istanbul the quality of WorldDEM, AW3D30, SRTM DSM and ASTER GDEM2 have been analyzed in relation to a reference aerial LiDAR DEM and to each other. The random and the systematic height errors have been separated. The absolute offset for all height models in X, Y and Z is within the expectation. The shifts have been respected in advance for a satisfying estimation of the random error component. All height models are influenced by some tilts, different in size. In addition systematic deformations can be seen not influencing the standard deviation too much. The delivery of WorldDEM includes information about the height error map which is based on the interferometric phase errors, and the number and location of coverage's from different orbits. A dependency of the height accuracy from the height error map information and the number of coverage's can be seen, but it is smaller as expected. WorldDEM is more accurate as the other investigated height models and with 10m point spacing it includes more morphologic details, visible at contour lines. The morphologic details are close to the details based on the LiDAR digital surface model (DSM). As usual a dependency of the accuracy from the terrain slope can be seen. In forest areas the canopy definition of InSAR X- and C-band height models as well as for the height models based on optical satellite images is not the same as the height definition by LiDAR. In addition the interferometric phase uncertainty over forest areas is larger. Both effects lead to lower height accuracy in forest areas, also visible in the height error map

    Dense loops, supersymmetry, and Goldstone phases in two dimensions

    Full text link
    Loop models in two dimensions can be related to O(N) models. The low-temperature dense-loops phase of such a model, or of its reformulation using a supergroup as symmetry, can have a Goldstone broken-symmetry phase for N<2. We argue that this phase is generic for -2< N <2 when crossings of loops are allowed, and distinct from the model of non-crossing dense loops first studied by Nienhuis [Phys. Rev. Lett. 49, 1062 (1982)]. Our arguments are supported by our numerical results, and by a lattice model solved exactly by Martins et al. [Phys. Rev. Lett. 81, 504 (1998)].Comment: RevTeX, 5 pages, 3 postscript figure

    Two new topologically ordered glass phases of smectics confined in anisotropic random media

    Get PDF
    We show that smectic liquid crystals confined in_anisotropic_ porous structures such as e.g.,_strained_ aerogel or aerosil exhibit two new glassy phases. The strain both ensures the stability of these phases and determines their nature. One type of strain induces an ``XY Bragg glass'', while the other creates a novel, triaxially anisotropic ``m=1 Bragg glass''. The latter exhibits anomalous elasticity, characterized by exponents that we calculate to high precision. We predict the phase diagram for the system, and numerous other experimental observables.Comment: 4 RevTeX pgs, 2 eps figures, submitted to Phys. Rev. Let
    • …
    corecore