503 research outputs found

    Exact solution and finite size properties of the Uq[osp(2∣2m)]U_{q}[osp(2|2m)] vertex model

    Get PDF
    We have diagonalized the transfer matrix of the Uq[osp(2∣2m)]U_{q}[osp(2|2m)] vertex model by means of the algebraic Bethe ansatz method for a variety of grading possibilities. This allowed us to investigate the thermodynamic limit as well as the finite size properties of the corresponding spin chain in the massless regime. The leading behaviour of the finite size corrections to the spectrum is conjectured for arbitrary mm. For m=1m=1 we find a critical line with central charge c=−1c=-1 whose exponents vary continuously with the qq-deformation parameter. For m≄2m\geq 2 the finite size term related to the conformal anomaly depends on the anisotropy which indicates a multicritical behaviour typical of loop models.Comment: 40 pages, 8 figures, late

    On inversions and Doob hh-transforms of linear diffusions

    Full text link
    Let XX be a regular linear diffusion whose state space is an open interval E⊆RE\subseteq\mathbb{R}. We consider a diffusion X∗X^* which probability law is obtained as a Doob hh-transform of the law of XX, where hh is a positive harmonic function for the infinitesimal generator of XX on EE. This is the dual of XX with respect to h(x)m(dx)h(x)m(dx) where m(dx)m(dx) is the speed measure of XX. Examples include the case where X∗X^* is XX conditioned to stay above some fixed level. We provide a construction of X∗X^* as a deterministic inversion of XX, time changed with some random clock. The study involves the construction of some inversions which generalize the Euclidean inversions. Brownian motion with drift and Bessel processes are considered in details.Comment: 19 page

    The effect of hygromycin on regeneration in different Alstroemeria explant types after Agrobacterium-mediated transformation

    Get PDF
    This is the first successful report of Agrobacterium-mediated transformation in Alstroemeria by infection of FEC (Friable Embryogenic Callus) lines and leaves with axil tissues. Of the transformation methods, particle bombardment and Agrobacterium-mediated transformation have been widely used to transfer foreign DNA into the plant genome. Especially, Agrobacterium tumefaciens efficiently infects most plants. Most monocotyledonous plants, including Alstroemeria, are recalcitrant to A. tumefaciens infection. Therefore, it is essential to develop an efficient, reliable protocol for Agrobacterium-mediated transformation in Alstroemeria. In order to achieve this aim, different hygromycin concentrations in selection medium were tested and compared in FEC explants and leaves with axil tissues using Agrobacterium strain LBA4404 (pTOK233). As a result, 20 mg/l hygromycin was a proper concentration to select for both FEC lines and leaves with axil tissues. Using this concentration, transformed lines were obtained. Moreover, FEC lines showed at least 2.5 times higher rate in the survival rate, and 5 times higher rate in transient GUS gene expression than those of leaves with axil tissues. The protocol, seems to be a promising method for the transformation of the monocot Alstroemeria with genes of interest in the near future

    An Effective-Medium Tight-Binding Model for Silicon

    Full text link
    A new method for calculating the total energy of Si systems is presented. The method is based on the effective-medium theory concept of a reference system. Instead of calculating the energy of an atom in the system of interest a reference system is introduced where the local surroundings are similar. The energy of the reference system can be calculated selfconsistently once and for all while the energy difference to the reference system can be obtained approximately. We propose to calculate it using the tight-binding LMTO scheme with the Atomic-Sphere Approximation(ASA) for the potential, and by using the ASA with charge-conserving spheres we are able to treat open system without introducing empty spheres. All steps in the calculational method is {\em ab initio} in the sense that all quantities entering are calculated from first principles without any fitting to experiment. A complete and detailed description of the method is given together with test calculations of the energies of phonons, elastic constants, different structures, surfaces and surface reconstructions. We compare the results to calculations using an empirical tight-binding scheme.Comment: 26 pages (11 uuencoded Postscript figures appended), LaTeX, CAMP-090594-

    Transport properties of strongly correlated metals:a dynamical mean-field approach

    Get PDF
    The temperature dependence of the transport properties of the metallic phase of a frustrated Hubbard model on the hypercubic lattice at half-filling are calculated. Dynamical mean-field theory, which maps the Hubbard model onto a single impurity Anderson model that is solved self-consistently, and becomes exact in the limit of large dimensionality, is used. As the temperature increases there is a smooth crossover from coherent Fermi liquid excitations at low temperatures to incoherent excitations at high temperatures. This crossover leads to a non-monotonic temperature dependence for the resistance, thermopower, and Hall coefficient, unlike in conventional metals. The resistance smoothly increases from a quadratic temperature dependence at low temperatures to large values which can exceed the Mott-Ioffe-Regel value, hbar a/e^2 (where "a" is a lattice constant) associated with mean-free paths less than a lattice constant. Further signatures of the thermal destruction of quasiparticle excitations are a peak in the thermopower and the absence of a Drude peak in the optical conductivity. The results presented here are relevant to a wide range of strongly correlated metals, including transition metal oxides, strontium ruthenates, and organic metals.Comment: 19 pages, 9 eps figure

    Spanning forests and the q-state Potts model in the limit q \to 0

    Get PDF
    We study the q-state Potts model with nearest-neighbor coupling v=e^{\beta J}-1 in the limit q,v \to 0 with the ratio w = v/q held fixed. Combinatorially, this limit gives rise to the generating polynomial of spanning forests; physically, it provides information about the Potts-model phase diagram in the neighborhood of (q,v) = (0,0). We have studied this model on the square and triangular lattices, using a transfer-matrix approach at both real and complex values of w. For both lattices, we have computed the symbolic transfer matrices for cylindrical strips of widths 2 \le L \le 10, as well as the limiting curves of partition-function zeros in the complex w-plane. For real w, we find two distinct phases separated by a transition point w=w_0, where w_0 = -1/4 (resp. w_0 = -0.1753 \pm 0.0002) for the square (resp. triangular) lattice. For w > w_0 we find a non-critical disordered phase, while for w < w_0 our results are compatible with a massless Berker-Kadanoff phase with conformal charge c = -2 and leading thermal scaling dimension x_{T,1} = 2 (marginal operator). At w = w_0 we find a "first-order critical point": the first derivative of the free energy is discontinuous at w_0, while the correlation length diverges as w \downarrow w_0 (and is infinite at w = w_0). The critical behavior at w = w_0 seems to be the same for both lattices and it differs from that of the Berker-Kadanoff phase: our results suggest that the conformal charge is c = -1, the leading thermal scaling dimension is x_{T,1} = 0, and the critical exponents are \nu = 1/d = 1/2 and \alpha = 1.Comment: 131 pages (LaTeX2e). Includes tex file, three sty files, and 65 Postscript figures. Also included are Mathematica files forests_sq_2-9P.m and forests_tri_2-9P.m. Final journal versio

    Finite-Temperature Transport in Finite-Size Hubbard Rings in the Strong-Coupling Limit

    Full text link
    We study the current, the curvature of levels, and the finite temperature charge stiffness, D(T,L), in the strongly correlated limit, U>>t, for Hubbard rings of L sites, with U the on-site Coulomb repulsion and t the hopping integral. Our study is done for finite-size systems and any band filling. Up to order t we derive our results following two independent approaches, namely, using the solution provided by the Bethe ansatz and the solution provided by an algebraic method, where the electronic operators are represented in a slave-fermion picture. We find that, in the U=\infty case, the finite-temperature charge stiffness is finite for electronic densities, n, smaller than one. These results are essencially those of spinless fermions in a lattice of size L, apart from small corrections coming from a statistical flux, due to the spin degrees of freedom. Up to order t, the Mott-Hubbard gap is \Delta_{MH}=U-4t, and we find that D(T) is finite for n<1, but is zero at half-filling. This result comes from the effective flux felt by the holon excitations, which, due to the presence of doubly occupied sites, is renormalized to \Phi^{eff}=\phi(N_h-N_d)/(N_d+N_h), and which is zero at half-filling, with N_d and N_h being the number of doubly occupied and empty lattice sites, respectively. Further, for half-filling, the current transported by any eigenstate of the system is zero and, therefore, D(T) is also zero.Comment: 15 pages and 6 figures; accepted for PR

    Incoherent Interplane Conductivity of kappa-(BEDT-TTF)2Cu[N(CN)2]Br

    Full text link
    The interplane optical spectrum of the organic superconductor kappa-(BEDT-TTF)2Cu[N(CN)2]Br was investigated in the frequency range from 40 to 40,000 cm-1. The optical conductivity was obtained by Kramers-Kronig analysis of the reflectance. The absence of a Drude peak at low frequency is consistent with incoherent conductivity but in apparent contradiction to the metallic temperature dependence of the DC resistivity. We set an upper limit to the interplane transfer integral of tb = 0.1 meV. A model of defect-assisted interplane transport can account for this discrepancy. We also assign the phonon lines in the conductivity to the asymmetric modes of the ET molecule.Comment: 7 pages with embedded figures, submitted to PR

    Feasibility of a mobile and web-based intervention to support self-management in outpatients with cancer pain

    Get PDF
    Purpose: Cancer pain is a prevalent and distressing symptom. To enhance self-management in outpatients, a multi-component intervention was developed, integrating patient self-management and professional care through healthcare technology. This article describes feasibility of the intervention in everyday practice. Method: Patients with moderate to severe cancer pain (n = 11) and registered nurses specialized in pain and palliative care (n = 3) participated in a four-week study. The intervention involved daily monitoring, graphical feedback, education, and advice by means of a mobile application for patients and a web application for nurses. Learnability, usability and desirability were measured in patients with a 20-item questionnaire (1–5 scale), higher scores indicating better feasibility. Patients' adherence was based on completion rates from server logs. Single semi-structured interviews with patients and a focus group interview with nurses provided insight into experiences. Results: Questionnaire findings confirmed learnability (4.8), usability (4.8) and desirability (4.6) of the application for patients. Average completion rates were 76.8% for pain monitoring, 50.4% for medication monitoring and 100% for education sessions. Interviews revealed that patients were pleased with the simplicity of the mobile application and appreciated different components. Nurses agreed upon the added value and were mostly positive about the possibilities of the web application. Patients and nurses provided ideas for improvements relating to the content and technical performance of the intervention. Conclusions: Study results demonstrate feasibility of the intervention in everyday practice. Provided that content-related and technical adjustments are made, the intervention enables patients with cancer pain to practice self-management and nurses to remotely support these patients

    Balanced harvest: concept, policies, evidence, and management implications

    Get PDF
    Balanced harvest has been proposed to reduce fishing impact on ecosystems while simultaneously maintaining or even increasing fishery yield. The concept has attracted broad interest, but also received criticisms. In this paper, we examine the theory, modelling studies, empirical evidence, the legal and policy frameworks, and management implications of balanced harvest. The examination reveals unresolved issues and challenges from both scientific and management perspectives. We summarize current knowledge and address common questions relevant to the idea. Major conclusions include: balanced harvest can be expressed in several ways and implemented on multiple levels, and with different approaches e.g. mĂ©tier based management; it explicitly bridges fisheries and conservation goals in accordance with international legal and policy frameworks; modelling studies and limited empirical evidence reveal that balanced harvest can reduce fishing impact on ecosystem structure and increase the aggregate yield; the extent of balanced harvest is not purely a scientific question, but also a legal and social choice; a transition to balanced harvest may incur short-term economic costs, while in the long-term, economic results will vary across individual fisheries and for society overall; for its application, balanced harvest can be adopted at both strategic and tactical levels and need not be a full implementation, but could aim for a “partially-balanced” harvest. Further objective discussions and research on this subject are needed to move balanced harvest toward supporting a practical ecosystem approach to fisheries
    • 

    corecore