10,853 research outputs found

    Forces and conductances in a single-molecule bipyridine junction

    Full text link
    Inspired by recent measurements of forces and conductances of bipyridine nano-junctions, we have performed density functional theory calculations of structure and electron transport in a bipyridine molecule attached between gold electrodes for seven different contact geometries. The calculations show that both the bonding force and the conductance are sensitive to the surface structure, and that both properties are in good agreement with experiment for contact geometries characterized by intermediate coordination of the metal atoms corresponding to a stepped surface. The conductance is mediated by the lowest unoccupied molecular orbital, which can be illustrated by a quantitative comparison with a one-level model. Implications for the interpretation of the experimentally determined force and conductance distributions are discussed

    Rate theory for correlated processes: Double-jumps in adatom diffusion

    Get PDF
    We study the rate of activated motion over multiple barriers, in particular the correlated double-jump of an adatom diffusing on a missing-row reconstructed Platinum (110) surface. We develop a Transition Path Theory, showing that the activation energy is given by the minimum-energy trajectory which succeeds in the double-jump. We explicitly calculate this trajectory within an effective-medium molecular dynamics simulation. A cusp in the acceptance region leads to a sqrt{T} prefactor for the activated rate of double-jumps. Theory and numerical results agree

    Conduction Mechanism in a Molecular Hydrogen Contact

    Get PDF
    We present first principles calculations for the conductance of a hydrogen molecule bridging a pair of Pt electrodes. The transmission function has a wide plateau with T~1 which extends across the Fermi level and indicates the existence of a single, robust conductance channel with nearly perfect transmission. Through a detailed Wannier function analysis we show that the H2 bonding state is not involved in the transport and that the plateau forms due to strong hybridization between the H2 anti-bonding state and states on the adjacent Pt atoms. The Wannier functions furthermore allow us to derive a resonant-level model for the system with all parameters determined from the fully self-consistent Kohn-Sham Hamiltonian.Comment: 5 pages, 4 figure

    Dynamic rotor mode in antiferromagnetic nanoparticles

    Get PDF
    We present experimental, numerical, and theoretical evidence for a new mode of antiferromagnetic dynamics in nanoparticles. Elastic neutron scattering experiments on 8 nm particles of hematite display a loss of diffraction intensity with temperature, the intensity vanishing around 150 K. However, the signal from inelastic neutron scattering remains above that temperature, indicating a magnetic system in constant motion. In addition, the precession frequency of the inelastic magnetic signal shows an increase above 100 K. Numerical Langevin simulations of spin dynamics reproduce all measured neutron data and reveal that thermally activated spin canting gives rise to a new type of coherent magnetic precession mode. This "rotor" mode can be seen as a high-temperature version of superparamagnetism and is driven by exchange interactions between the two magnetic sublattices. The frequency of the rotor mode behaves in fair agreement with a simple analytical model, based on a high temperature approximation of the generally accepted Hamiltonian of the system. The extracted model parameters, as the magnetic interaction and the axial anisotropy, are in excellent agreement with results from Mossbauer spectroscopy

    Variational QMC study of a Hydrogen atom in jellium with comparison to LSDA and LSDA-SIC solutions

    Full text link
    A Hydrogen atom immersed in a finite jellium sphere is solved using variational quantum Monte Carlo (VQMC). The same system is also solved using density functional theory (DFT), in both the local spin density (LSDA) and self-interaction correction (SIC) approximations. The immersion energies calculated using these methods, as functions of the background density of the jellium, are found to lie within 1eV of each other with minima in approximately the same positions. The DFT results show overbinding relative to the VQMC result. The immersion energies also suggest an improved performance of the SIC over the LSDA relative to the VQMC results. The atom-induced density is also calculated and shows a difference between the methods, with a more extended Friedel oscillation in the case of the VQMC result.Comment: 16 pages, 9 Postscript figure

    Partly Occupied Wannier Functions

    Get PDF
    We introduce a scheme for constructing partly occupied, maximally localized Wannier functions (WFs) for both molecular and periodic systems. Compared to the traditional occupied WFs the partly occupied WFs posses improved symmetry and localization properties achieved through a bonding-antibonding closing procedure. We demonstrate the equivalence between bonding-antibonding closure and the minimization of the average spread of the WFs in the case of a benzene molecule and a linear chain of Pt atoms. The general applicability of the method is demonstrated through the calculation of WFs for a metallic system with an impurity: a Pt wire with a hydrogen molecular bridge.Comment: 5 pages, 4 figure

    Secondary Structures in Long Compact Polymers

    Full text link
    Compact polymers are self-avoiding random walks which visit every site on a lattice. This polymer model is used widely for studying statistical problems inspired by protein folding. One difficulty with using compact polymers to perform numerical calculations is generating a sufficiently large number of randomly sampled configurations. We present a Monte-Carlo algorithm which uniformly samples compact polymer configurations in an efficient manner allowing investigations of chains much longer than previously studied. Chain configurations generated by the algorithm are used to compute statistics of secondary structures in compact polymers. We determine the fraction of monomers participating in secondary structures, and show that it is self averaging in the long chain limit and strictly less than one. Comparison with results for lattice models of open polymer chains shows that compact chains are significantly more likely to form secondary structure.Comment: 14 pages, 14 figure

    Inelastic Scattering in Metal-H2-Metal Junctions

    Get PDF
    We present first-principles calculations of the dI/dV characteristics of an H2 molecule sandwiched between Au and Pt electrodes in the presence of electron-phonon interactions. The conductance is found to decrease by a few percentage at threshold voltages corresponding to the excitation energy of longitudinal vibrations of the H2 molecule. In the case of Pt electrodes, the transverse vibrations can mediate transport through otherwise non-transmitting Pt dd-channels leading to an increase in the differential conductance even though the hydrogen junction is characterized predominately by a single almost fully open transport channel. In the case of Au, the transverse modes do not affect the dI/dV because the Au d-states are too far below the Fermi level. A simple explanation of the first-principles results is given using scattering theory. Finally, we compare and discuss our results in relation to experimental data.Comment: Accepted in Phys. Rev.

    Advanced tracking systems design and analysis

    Get PDF
    The results of an assessment of several types of high-accuracy tracking systems proposed to track the spacecraft in the National Aeronautics and Space Administration (NASA) Advanced Tracking and Data Relay Satellite System (ATDRSS) are summarized. Tracking systems based on the use of interferometry and ranging are investigated. For each system, the top-level system design and operations concept are provided. A comparative system assessment is presented in terms of orbit determination performance, ATDRSS impacts, life-cycle cost, and technological risk

    Loop Model with Generalized Fugacity in Three Dimensions

    Full text link
    A statistical model of loops on the three-dimensional lattice is proposed and is investigated. It is O(n)-type but has loop fugacity that depends on global three-dimensional shapes of loops in a particular fashion. It is shown that, despite this non-locality and the dimensionality, a layer-to-layer transfer matrix can be constructed as a product of local vertex weights for infinitely many points in the parameter space. Using this transfer matrix, the site entropy is estimated numerically in the fully packed limit.Comment: 16pages, 4 eps figures, (v2) typos and Table 3 corrected. Refs added, (v3) an error in an explanation of fig.2 corrected. Refs added. (v4) Changes in the presentatio
    • …
    corecore