10,853 research outputs found
Forces and conductances in a single-molecule bipyridine junction
Inspired by recent measurements of forces and conductances of bipyridine
nano-junctions, we have performed density functional theory calculations of
structure and electron transport in a bipyridine molecule attached between gold
electrodes for seven different contact geometries. The calculations show that
both the bonding force and the conductance are sensitive to the surface
structure, and that both properties are in good agreement with experiment for
contact geometries characterized by intermediate coordination of the metal
atoms corresponding to a stepped surface. The conductance is mediated by the
lowest unoccupied molecular orbital, which can be illustrated by a quantitative
comparison with a one-level model. Implications for the interpretation of the
experimentally determined force and conductance distributions are discussed
Rate theory for correlated processes: Double-jumps in adatom diffusion
We study the rate of activated motion over multiple barriers, in particular
the correlated double-jump of an adatom diffusing on a missing-row
reconstructed Platinum (110) surface. We develop a Transition Path Theory,
showing that the activation energy is given by the minimum-energy trajectory
which succeeds in the double-jump. We explicitly calculate this trajectory
within an effective-medium molecular dynamics simulation. A cusp in the
acceptance region leads to a sqrt{T} prefactor for the activated rate of
double-jumps. Theory and numerical results agree
Conduction Mechanism in a Molecular Hydrogen Contact
We present first principles calculations for the conductance of a hydrogen
molecule bridging a pair of Pt electrodes. The transmission function has a wide
plateau with T~1 which extends across the Fermi level and indicates the
existence of a single, robust conductance channel with nearly perfect
transmission. Through a detailed Wannier function analysis we show that the H2
bonding state is not involved in the transport and that the plateau forms due
to strong hybridization between the H2 anti-bonding state and states on the
adjacent Pt atoms. The Wannier functions furthermore allow us to derive a
resonant-level model for the system with all parameters determined from the
fully self-consistent Kohn-Sham Hamiltonian.Comment: 5 pages, 4 figure
Dynamic rotor mode in antiferromagnetic nanoparticles
We present experimental, numerical, and theoretical evidence for a new mode
of antiferromagnetic dynamics in nanoparticles. Elastic neutron scattering
experiments on 8 nm particles of hematite display a loss of diffraction
intensity with temperature, the intensity vanishing around 150 K. However, the
signal from inelastic neutron scattering remains above that temperature,
indicating a magnetic system in constant motion. In addition, the precession
frequency of the inelastic magnetic signal shows an increase above 100 K.
Numerical Langevin simulations of spin dynamics reproduce all measured neutron
data and reveal that thermally activated spin canting gives rise to a new type
of coherent magnetic precession mode. This "rotor" mode can be seen as a
high-temperature version of superparamagnetism and is driven by exchange
interactions between the two magnetic sublattices. The frequency of the rotor
mode behaves in fair agreement with a simple analytical model, based on a high
temperature approximation of the generally accepted Hamiltonian of the system.
The extracted model parameters, as the magnetic interaction and the axial
anisotropy, are in excellent agreement with results from Mossbauer
spectroscopy
Variational QMC study of a Hydrogen atom in jellium with comparison to LSDA and LSDA-SIC solutions
A Hydrogen atom immersed in a finite jellium sphere is solved using
variational quantum Monte Carlo (VQMC). The same system is also solved using
density functional theory (DFT), in both the local spin density (LSDA) and
self-interaction correction (SIC) approximations. The immersion energies
calculated using these methods, as functions of the background density of the
jellium, are found to lie within 1eV of each other with minima in approximately
the same positions. The DFT results show overbinding relative to the VQMC
result. The immersion energies also suggest an improved performance of the SIC
over the LSDA relative to the VQMC results. The atom-induced density is also
calculated and shows a difference between the methods, with a more extended
Friedel oscillation in the case of the VQMC result.Comment: 16 pages, 9 Postscript figure
Partly Occupied Wannier Functions
We introduce a scheme for constructing partly occupied, maximally localized
Wannier functions (WFs) for both molecular and periodic systems. Compared to
the traditional occupied WFs the partly occupied WFs posses improved symmetry
and localization properties achieved through a bonding-antibonding closing
procedure. We demonstrate the equivalence between bonding-antibonding closure
and the minimization of the average spread of the WFs in the case of a benzene
molecule and a linear chain of Pt atoms. The general applicability of the
method is demonstrated through the calculation of WFs for a metallic system
with an impurity: a Pt wire with a hydrogen molecular bridge.Comment: 5 pages, 4 figure
Secondary Structures in Long Compact Polymers
Compact polymers are self-avoiding random walks which visit every site on a
lattice. This polymer model is used widely for studying statistical problems
inspired by protein folding. One difficulty with using compact polymers to
perform numerical calculations is generating a sufficiently large number of
randomly sampled configurations. We present a Monte-Carlo algorithm which
uniformly samples compact polymer configurations in an efficient manner
allowing investigations of chains much longer than previously studied. Chain
configurations generated by the algorithm are used to compute statistics of
secondary structures in compact polymers. We determine the fraction of monomers
participating in secondary structures, and show that it is self averaging in
the long chain limit and strictly less than one. Comparison with results for
lattice models of open polymer chains shows that compact chains are
significantly more likely to form secondary structure.Comment: 14 pages, 14 figure
Inelastic Scattering in Metal-H2-Metal Junctions
We present first-principles calculations of the dI/dV characteristics of an
H2 molecule sandwiched between Au and Pt electrodes in the presence of
electron-phonon interactions. The conductance is found to decrease by a few
percentage at threshold voltages corresponding to the excitation energy of
longitudinal vibrations of the H2 molecule. In the case of Pt electrodes, the
transverse vibrations can mediate transport through otherwise non-transmitting
Pt -channels leading to an increase in the differential conductance even
though the hydrogen junction is characterized predominately by a single almost
fully open transport channel. In the case of Au, the transverse modes do not
affect the dI/dV because the Au d-states are too far below the Fermi level. A
simple explanation of the first-principles results is given using scattering
theory. Finally, we compare and discuss our results in relation to experimental
data.Comment: Accepted in Phys. Rev.
Advanced tracking systems design and analysis
The results of an assessment of several types of high-accuracy tracking systems proposed to track the spacecraft in the National Aeronautics and Space Administration (NASA) Advanced Tracking and Data Relay Satellite System (ATDRSS) are summarized. Tracking systems based on the use of interferometry and ranging are investigated. For each system, the top-level system design and operations concept are provided. A comparative system assessment is presented in terms of orbit determination performance, ATDRSS impacts, life-cycle cost, and technological risk
Loop Model with Generalized Fugacity in Three Dimensions
A statistical model of loops on the three-dimensional lattice is proposed and
is investigated. It is O(n)-type but has loop fugacity that depends on global
three-dimensional shapes of loops in a particular fashion. It is shown that,
despite this non-locality and the dimensionality, a layer-to-layer transfer
matrix can be constructed as a product of local vertex weights for infinitely
many points in the parameter space. Using this transfer matrix, the site
entropy is estimated numerically in the fully packed limit.Comment: 16pages, 4 eps figures, (v2) typos and Table 3 corrected. Refs added,
(v3) an error in an explanation of fig.2 corrected. Refs added. (v4) Changes
in the presentatio
- …