149 research outputs found

    Specificity of the osmotic stress response in Candida albicans highlighted by quantitative proteomics

    Get PDF
    We are grateful to the BBSRC for funding the CRISP Consortium (Combinatorial Responses in Stress Pathways) under the SABR Initiative (Systems Approaches to Biological Research) (BB/F00513X/1; BB/F005210/1). AJPB was also funded by the BBSRC (BB/K017365/1), the ERC (C-2009-AdG-249793), the Wellcome Trust (097377), the MRC (MR/M026663/1), and the MRC Centre for Medical Mycology and the University of Aberdeen (MR/M026663/1).Peer reviewedPublisher PD

    Mixed Candida albicans strain populations in colonized and infected mucosal tissues

    Get PDF
    Multilocus sequence typing of six Candida albicans colonies from primary isolation plates revealed instances of colony-to-colony microvariation and carriage of two strain types in single oropharyngeal and vaginal samples. Higher rates of colony variation in commensal samples suggest selection of types from mixed populations either in the shift to pathogenicity or the response to antifungal treatment

    Integrative Model of Oxidative Stress Adaptation in the Fungal Pathogen Candida albicans

    Get PDF
    Acknowledgments We are grateful to the Ian Fraser Cytometry Centre and our Mass Spetrometry and qPCR Facilities for help with the flow cytometry, glutathione and qRT-PCR assays, respectively. We also thank our many colleagues in the CRISP Consortium and in the medical mycology and systems biology communities for insightful discussions. Funding: This work was supported by the CRISP project (Combinatorial Responses In Stress Pathways), which was funded by the UK Biotechnology and Biological Research Council (www.bbsrc.ac.uk): AJPB, KH, CG, ADM, NARG, MT, MCR. (Research Grants; BB/F00513X/1, BB/F005210/1-2). AJPB and JQ received additional support from the BBSRC (Research Grants; BB/K016393/1; BB/K017365/1). NARG and AJPB were also supported by the Wellcome Trust (www.wellcome.ac.uk), (Grants: 080088; 097377). AJPB was also supported by the European Research Council (http://erc.europa.eu/), (STRIFE Advanced Grant; ERC-2009-AdG-249793). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Stress adaptation in a pathogenic fungus

    Get PDF
    Funding We are grateful to our funding bodies for their support. This work was supported by the European Commission [FINSysB, PITN-GA-2008-214004; STRIFE, ERC-2009-AdG-249793], by the UK Biotechnology and Biological Research Council [grant numbers BBS/B/06679; BB/C510391/1; BB/D009308/1; BB/F000111/1; BB/F010826/1; BB/F00513X/1], and by the Wellcome Trust [grant numbers 080088, 097377]. M.D.L. was also supported by a Carnegie/Caledonian Scholarship and a Sir Henry Wellcome Postdoctoral Fellowship from the Wellcome Trust [grant number 096072]. Deposited in PMC for immediate release.Peer reviewedPublisher PD

    A genetically modified minipig model for Alzheimer's disease with SORL1 haploinsufficiency

    Get PDF
    The established causal genes in Alzheimer’s disease (AD), APP, PSEN1, and PSEN2, are functionally characterized using biomarkers, capturing an in vivo profile reflecting the disease’s initial preclinical phase. Mutations in SORL1, encoding the endosome recycling receptor SORLA, are found in 2%–3% of individuals with early-onset AD, and SORL1 haploinsufficiency appears to be causal for AD. To test whether SORL1 can function as an AD causal gene, we use CRISPR-Cas9-based gene editing to develop a model of SORL1 haploinsufficiency in Göttingen minipigs, taking advantage of porcine models for biomarker investigations. SORL1 haploinsufficiency in young adult minipigs is found to phenocopy the preclinical in vivo profile of AD observed with APP, PSEN1, and PSEN2, resulting in elevated levels of β-amyloid (Aβ) and tau preceding amyloid plaque formation and neurodegeneration, as observed in humans. Our study provides functional support for the theory that SORL1 haploinsufficiency leads to endosome cytopathology with biofluid hallmarks of autosomal dominant AD

    Transcriptional Portrait of Actinobacillus pleuropneumoniae during Acute Disease - Potential Strategies for Survival and Persistence in the Host

    Get PDF
    BACKGROUND: Gene expression profiles of bacteria in their natural hosts can provide novel insight into the host-pathogen interactions and molecular determinants of bacterial infections. In the present study, the transcriptional profile of the porcine lung pathogen Actinobacillus pleuropneumoniae was monitored during the acute phase of infection in its natural host. METHODOLOGY/PRINCIPAL FINDINGS: Bacterial expression profiles of A. pleuropneumoniae isolated from lung lesions of 25 infected pigs were compared in samples taken 6, 12, 24 and 48 hours post experimental challenge. Within 6 hours, focal, fibrino hemorrhagic lesions could be observed in the pig lungs, indicating that A. pleuropneumoniae had managed to establish itself successfully in the host. We identified 237 differentially regulated genes likely to encode functions required by the bacteria for colonization and survival in the host. This group was dominated by genes involved in various aspects of energy metabolism, especially anaerobic respiration and carbohydrate metabolism. Remodeling of the bacterial envelope and modifications of posttranslational processing of proteins also appeared to be of importance during early infection. The results suggested that A. pleuropneumoniae is using various strategies to increase its fitness, such as applying Na+ pumps as an alternative way of gaining energy. Furthermore, the transcriptional data provided potential clues as to how A. pleuropneumoniae is able to circumvent host immune factors and survive within the hostile environment of host macrophages. This persistence within macrophages may be related to urease activity, mobilization of various stress responses and active evasion of the host defenses by cell surface sialylation. CONCLUSIONS/SIGNIFICANCE: The data presented here highlight the importance of metabolic adjustments to host conditions as virulence factors of infecting microorganisms and help to provide insight into the mechanisms behind the efficient colonization and persistence of A. pleuropneumoniae during acute disease
    corecore