33,027 research outputs found
Stability and performance characteristics of a fixed arrow wing supersonic transport configuration (SCAT 15F-9898) at Mach numbers from 0.60 to 1.20
Tests on a 0.015 scale model of a supersonic transport were conducted at Mach numbers from 0.60 to 1.20. Tests of the complete model with three wing planforms, two different leading-edge radii, and various combinations of component parts, including both leading- and trailing-edge flaps, were made over an angle-of-attack range from about -6 deg to 13 deg and at sideslip angles of 0 deg and 2 deg
Mach 4 and Mach 8 axisymmetric nozzles for a shock tunnel
The performance of two axisymmetric nozzles which were designed to produce uniform, parallel flow with nominal Mach numbers of 4 and 8 is examined. A free-piston-driven shock tube was used to supply the nozzle with high-temperature, high-pressure test gas. The inviscid design procedure treated the nozzle expansion in two stages. Close to the nozzle throat, the nozzle wall was specified as conical and the gas flow was treated as a quasi-one-dimensional chemically-reacting flow. At the end of the conical expansion, the gas was assumed to be calorically perfect, and a contoured wall was designed (using method of characteristics) to convert the source flow into a uniform and parallel flow at the end of the nozzle. Performance was assessed by measuring Pitot pressures across the exit plane of the nozzles and, over the range of operating conditions examined, the nozzles produced satisfactory test flows. However, there were flow disturbances in the Mach 8 nozzle flow that persisted for significant times after flow initiation
Overview of the Status and Strangeness Capabilities of STAR
STAR is a large acceptance spectrometer capable of precision measurements of
a wide variety of strange particles. We discuss the STAR detector, its
configuration during the first two years of RHIC operation, and its initial
performance for Au+Au collisions. The expected performance for strangeness
physics and initial data on strange particle reconstruction in Au+Au collisions
are presented.Comment: Proceedings of the Fifth International Conference on Strangeness in
Quark Matter, Berkeley, California, July 20-25, 200
Study of information transfer optimization for communication satellites
The results are presented of a study of source coding, modulation/channel coding, and systems techniques for application to teleconferencing over high data rate digital communication satellite links. Simultaneous transmission of video, voice, data, and/or graphics is possible in various teleconferencing modes and one-way, two-way, and broadcast modes are considered. A satellite channel model including filters, limiter, a TWT, detectors, and an optimized equalizer is treated in detail. A complete analysis is presented for one set of system assumptions which exclude nonlinear gain and phase distortion in the TWT. Modulation, demodulation, and channel coding are considered, based on an additive white Gaussian noise channel model which is an idealization of an equalized channel. Source coding with emphasis on video data compression is reviewed, and the experimental facility utilized to test promising techniques is fully described
Heralded Two-Photon Entanglement from Probabilistic Quantum Logic Operations on Multiple Parametric Down-Conversion Sources
An ideal controlled-NOT gate followed by projective measurements can be used
to identify specific Bell states of its two input qubits. When the input qubits
are each members of independent Bell states, these projective measurements can
be used to swap the post-selected entanglement onto the remaining two qubits.
Here we apply this strategy to produce heralded two-photon polarization
entanglement using Bell states that originate from independent parametric
down-conversion sources, and a particular probabilistic controlled-NOT gate
that is constructed from linear optical elements. The resulting implementation
is closely related to an earlier proposal by Sliwa and Banaszek
[quant-ph/0207117], and can be intuitively understood in terms of familiar
quantum information protocols. The possibility of producing a ``pseudo-demand''
source of two-photon entanglement by storing and releasing these heralded pairs
from independent cyclical quantum memory devices is also discussed.Comment: 5 pages, 4 figures; submitted to IEEE Journal of Selected Topics in
Quantum Electronics, special issue on "Quantum Internet Technologies
Rapid-purification protocols for optical homodyning
We present a number of rapid-purification feedback protocols for optical
homodyne detection of a single optical qubit. We derive first a protocol that
speeds up the rate of increase of the average purity of the system, and find
that like the equivalent protocol for a non-disspative measurement, this
generates a deterministic evolution for the purity in the limit of strong
feedback. We also consider two analogues of the Wiseman-Ralph
rapid-purification protocol in this setting, and show that like that protocol
they speed up the average time taken to reach a fixed level of purity. We also
examine how the performance of these algorithms changes with detection
efficiency, being an important practical consideration.Comment: 6 pages, revtex4, 3 eps figure
- …