23,288 research outputs found

    Automatic cross-sectioning and monitoring system locates defects in electronic devices

    Get PDF
    System consists of motorized grinding and lapping apparatus, sample holder, and electronic control circuit. Low power microscope examines device to pinpoint location of circuit defect, and monitor displays output signal when defect is located exactly

    Presence of Salmonella and Campylobacter spp. in Wild Small Mammals on Organic Farms

    Get PDF
    The presence of Salmonella and Campylobacter spp. in rodents and insectivores (n 282) was investigated on organic farms. Infections were encountered in house mice (8 of 83 Campylobacter positive and 1 of 83 Salmonella sp. strain Livingstone positive) and brown rats (1 of 8 Campylobacter positive) but not in other species. No shared Campylobacter genotypes were found between rodent and pig manure isolates. Effective on-farm rodent management is recommended

    Healthiness from Duality

    Get PDF
    Healthiness is a good old question in program logics that dates back to Dijkstra. It asks for an intrinsic characterization of those predicate transformers which arise as the (backward) interpretation of a certain class of programs. There are several results known for healthiness conditions: for deterministic programs, nondeterministic ones, probabilistic ones, etc. Building upon our previous works on so-called state-and-effect triangles, we contribute a unified categorical framework for investigating healthiness conditions. We find the framework to be centered around a dual adjunction induced by a dualizing object, together with our notion of relative Eilenberg-Moore algebra playing fundamental roles too. The latter notion seems interesting in its own right in the context of monads, Lawvere theories and enriched categories.Comment: 13 pages, Extended version with appendices of a paper accepted to LICS 201

    Combinatorial models of rigidity and renormalization

    Full text link
    We first introduce the percolation problems associated with the graph theoretical concepts of (k,l)(k,l)-sparsity, and make contact with the physical concepts of ordinary and rigidity percolation. We then devise a renormalization transformation for (k,l)(k,l)-percolation problems, and investigate its domain of validity. In particular, we show that it allows an exact solution of (k,l)(k,l)-percolation problems on hierarchical graphs, for k≤l<2kk\leq l<2k. We introduce and solve by renormalization such a model, which has the interesting feature of showing both ordinary percolation and rigidity percolation phase transitions, depending on the values of the parameters.Comment: 22 pages, 6 figure

    Investigation of a single-photon source based on quantum interference

    Get PDF
    We report on an experimental investigation of a single-photon source based on a quantum interference effect first demonstrated by Koashi, Matsuoka, and Hirano [Phys. Rev. A 53, 3621 (1996)]. For certain types of measurement-based quantum information processing applications this technique may be useful as a high rate, but random, source of single photons.Comment: Submitted to the New J. Phys. Focus Issue on "Measurement-based quantum information processing

    Anomalous mass dependence of radiative quark energy loss in a finite-size quark-gluon plasma

    Full text link
    We demonstrate that for a finite-size quark-gluon plasma the induced gluon radiation from heavy quarks is stronger than that for light quarks when the gluon formation length becomes comparable with (or exceeds) the size of the plasma. The effect is due to oscillations of the light-cone wave function for the in-medium q→gqq\to gq transition. The dead cone model by Dokshitzer and Kharzeev neglecting quantum finite-size effects is not valid in this regime. The finite-size effects also enhance the photon emission from heavy quarks.Comment: 8 pages, 3 figure

    Generic Fibrational Induction

    Full text link
    This paper provides an induction rule that can be used to prove properties of data structures whose types are inductive, i.e., are carriers of initial algebras of functors. Our results are semantic in nature and are inspired by Hermida and Jacobs' elegant algebraic formulation of induction for polynomial data types. Our contribution is to derive, under slightly different assumptions, a sound induction rule that is generic over all inductive types, polynomial or not. Our induction rule is generic over the kinds of properties to be proved as well: like Hermida and Jacobs, we work in a general fibrational setting and so can accommodate very general notions of properties on inductive types rather than just those of a particular syntactic form. We establish the soundness of our generic induction rule by reducing induction to iteration. We then show how our generic induction rule can be instantiated to give induction rules for the data types of rose trees, finite hereditary sets, and hyperfunctions. The first of these lies outside the scope of Hermida and Jacobs' work because it is not polynomial, and as far as we are aware, no induction rules have been known to exist for the second and third in a general fibrational framework. Our instantiation for hyperfunctions underscores the value of working in the general fibrational setting since this data type cannot be interpreted as a set.Comment: For Special Issue from CSL 201
    • …
    corecore