30,723 research outputs found
Combinatorial models of rigidity and renormalization
We first introduce the percolation problems associated with the graph
theoretical concepts of -sparsity, and make contact with the physical
concepts of ordinary and rigidity percolation. We then devise a renormalization
transformation for -percolation problems, and investigate its domain of
validity. In particular, we show that it allows an exact solution of
-percolation problems on hierarchical graphs, for . We
introduce and solve by renormalization such a model, which has the interesting
feature of showing both ordinary percolation and rigidity percolation phase
transitions, depending on the values of the parameters.Comment: 22 pages, 6 figure
Floppy modes and the free energy: Rigidity and connectivity percolation on Bethe Lattices
We show that negative of the number of floppy modes behaves as a free energy
for both connectivity and rigidity percolation, and we illustrate this result
using Bethe lattices. The rigidity transition on Bethe lattices is found to be
first order at a bond concentration close to that predicted by Maxwell
constraint counting. We calculate the probability of a bond being on the
infinite cluster and also on the overconstrained part of the infinite cluster,
and show how a specific heat can be defined as the second derivative of the
free energy. We demonstrate that the Bethe lattice solution is equivalent to
that of the random bond model, where points are joined randomly (with equal
probability at all length scales) to have a given coordination, and then
subsequently bonds are randomly removed.Comment: RevTeX 11 pages + epsfig embedded figures. Submitted to Phys. Rev.
Company Taxation in the European Union
This paper investigates different measures of corporate tax burden ranging from the most basic ones such as the statutory tax rate to the effective tax rates. Each of these measures has advantages and disadvantages and they may lead to different rankings of countries. One of the reasons lies the fact that they measure different things. The comparison of the statutory tax rates to the effective ones for the EU-27 during the period of 1998-2009 sometimes reveals very significant differences between these indicators. Taking this into consideration, the paper suggests that corporate tax burden analysis should not be limited to the most basic and readily available measure in the form of the statutory tax rate. Different measures are tailored to answer different research questions. Moreover, the article presents changes of company taxation for the EU-27 within 1998-2009.W artykule dokonano przeglądu miar obciążenia podatkowego przedsiębiorstw. Rozpoczynając od wielkości najprostszych, jak stopa nominalna, a kończąc na miarach efektywnych. Każdy ze wskaźników ma wady i zalety, a jego wykorzystanie może prowadzić do różnego uszeregowania państw ze względu na poziom opodatkowania. Jedną z przyczyn jest fakt, iż wielkości te mierzą inne rzeczy. Porównanie stóp nominalnych i efektywnych w krajach UE-27, w latach 1998-2009, wskazuje na istnienie niekiedy bardzo istotnych różnic pomiędzy analizowanymi wskaźnikami. W związku z tym artykuł sugeruje, iż nie należy ograniczać analiz opodatkowania przedsiębiorstw, do najprostszego i najłatwiej dostępnego wskaźnika w postaci ustawowej stopy podatkowej a rozszerzyć je o miary efektywne. Wielkości te, stanowiące lepszy instrument do porównań międzynarodowych, umożliwiają przeprowadzenie wszechstronnych badań
Ultrafast charge transfer and vibronic coupling in a laser-excited hybrid inorganic/organic interface
Hybrid interfaces formed by inorganic semiconductors and organic molecules are intriguing materials for opto-electronics. Interfacial charge transfer is primarily responsible for their peculiar electronic structure and optical response. Hence, it is essential to gain insight into this fundamental process also beyond the static picture. Ab initio methods based on real-time time-dependent density-functional theory coupled to the Ehrenfest molecular dynamics scheme are ideally suited for this problem. We investigate a laser-excited hybrid inorganic/organic interface formed by the electron acceptor molecule 2,3,5,6-tetrafluoro-7,7,8,8-tetracyano-quinodimethane (F4TCNQ) physisorbed on a hydrogenated silicon cluster, and we discuss the fundamental mechanisms of charge transfer in the ultrashort time window following the impulsive excitation. The considered interface is p-doped and exhibits charge transfer in the ground state. When it is excited by a resonant laser pulse, the charge transfer across the interface is additionally increased, but contrary to previous observations in all-organic donor/acceptor complexes, it is not further promoted by vibronic coupling. In the considered time window of 100 fs, the molecular vibrations are coupled to the electron dynamics and enhance intramolecular charge transfer. Our results highlight the complexity of the physics involved and demonstrate the ability of the adopted formalism to achieve a comprehensive understanding of ultrafast charge transfer in hybrid materials
Experimental Demonstration of a Quantum Circuit using Linear Optics Gates
One of the main advantages of an optical approach to quantum computing is the
fact that optical fibers can be used to connect the logic and memory devices to
form useful circuits, in analogy with the wires of a conventional computer.
Here we describe an experimental demonstration of a simple quantum circuit of
that kind in which two probabilistic exclusive-OR (XOR) logic gates were
combined to calculate the parity of three input qubits.Comment: v2 is final PRA versio
Overview of the Status and Strangeness Capabilities of STAR
STAR is a large acceptance spectrometer capable of precision measurements of
a wide variety of strange particles. We discuss the STAR detector, its
configuration during the first two years of RHIC operation, and its initial
performance for Au+Au collisions. The expected performance for strangeness
physics and initial data on strange particle reconstruction in Au+Au collisions
are presented.Comment: Proceedings of the Fifth International Conference on Strangeness in
Quark Matter, Berkeley, California, July 20-25, 200
Heralded Two-Photon Entanglement from Probabilistic Quantum Logic Operations on Multiple Parametric Down-Conversion Sources
An ideal controlled-NOT gate followed by projective measurements can be used
to identify specific Bell states of its two input qubits. When the input qubits
are each members of independent Bell states, these projective measurements can
be used to swap the post-selected entanglement onto the remaining two qubits.
Here we apply this strategy to produce heralded two-photon polarization
entanglement using Bell states that originate from independent parametric
down-conversion sources, and a particular probabilistic controlled-NOT gate
that is constructed from linear optical elements. The resulting implementation
is closely related to an earlier proposal by Sliwa and Banaszek
[quant-ph/0207117], and can be intuitively understood in terms of familiar
quantum information protocols. The possibility of producing a ``pseudo-demand''
source of two-photon entanglement by storing and releasing these heralded pairs
from independent cyclical quantum memory devices is also discussed.Comment: 5 pages, 4 figures; submitted to IEEE Journal of Selected Topics in
Quantum Electronics, special issue on "Quantum Internet Technologies
Rapid state purification protocols for a Cooper pair box
We propose techniques for implementing two different rapid state purification
schemes, within the constraints present in a superconducting charge qubit
system. Both schemes use a continuous measurement of charge (z) measurements,
and seek to minimize the time required to purify the conditional state. Our
methods are designed to make the purification process relatively insensitive to
rotations about the x-axis, due to the Josephson tunnelling Hamiltonian. The
first proposed method, based on the scheme of Jacobs [Phys. Rev. A 67,
030301(R) (2003)] uses the measurement results to control bias (z) pulses so as
to rotate the Bloch vector onto the x-axis of the Bloch sphere. The second
proposed method, based on the scheme of Wiseman and Ralph [New J. Phys. 8, 90
(2006)] uses a simple feedback protocol which tightly rotates the Bloch vector
about an axis almost parallel with the measurement axis. We compare the
performance of these and other techniques by a number of different measures.Comment: 14 pages, 14 figures. v2: Revised version after referee comments.
Accepted for publication by Physical Review
Investigation of a single-photon source based on quantum interference
We report on an experimental investigation of a single-photon source based on
a quantum interference effect first demonstrated by Koashi, Matsuoka, and
Hirano [Phys. Rev. A 53, 3621 (1996)]. For certain types of measurement-based
quantum information processing applications this technique may be useful as a
high rate, but random, source of single photons.Comment: Submitted to the New J. Phys. Focus Issue on "Measurement-based
quantum information processing
- …