874 research outputs found

    Mitigation of Radiation Induced Pulmonary Vascular Injury by Delayed Treatment with Captopril

    Get PDF
    Background and Objective: A single dose of 10 Gy radiation to the thorax of rats results in decreased total lung angiotensin-converting enzyme (ACE) activity, pulmonary artery distensibility and distal vascular density while increasing pulmonary vascular resistance (PVR) at 2 months post-exposure. In this study, we evaluate the potential of a renin-angiotensin system (RAS) modulator, the ACE inhibitor captopril, to mitigate this pulmonary vascular damage. Methods: Rats exposed to 10 Gy thorax only irradiation and age-matched controls were studied 2 months after exposure, during the development of radiation pneumonitis. Rats were treated, either immediately or 2 weeks after radiation exposure, with two doses of the ACE inhibitor, captopril, dissolved in their drinking water. To determine pulmonary vascular responses, we measured pulmonary haemodynamics, lung ACE activity, pulmonary arterial distensibility and peripheral vessel density. Results: Captopril, given at a vasoactive, but not a lower dose, mitigated radiation-induced pulmonary vascular injury. More importantly, these beneficial effects were observed even if drug therapy was delayed for up to 2 weeks after exposure. Conclusions: Captopril resulted in a reduction in pulmonary vascular injury that supports its use as a radiomitigator after an unexpected radiological event such as a nuclear accident

    Biomarkers for Radiation Pneumonitis Using Noninvasive Molecular Imaging

    Get PDF
    Our goal is to develop minimally invasive biomarkers for predicting radiation-induced lung injury before symptoms develop. Currently, there are no biomarkers that can predict radiation pneumonitis. Radiation damage to the whole lung is a serious risk in nuclear accidents or in radiologic terrorism. Our previous studies have shown that a single dose of 15 Gy of x-rays to the thorax causes severe pneumonitis in rats by 6–8 wk. We have also developed a mitigator for radiation pneumonitis and fibrosis that can be started as late as 5 wk after radiation. Methods: We used 2 functional SPECT probes in vivo in irradiated rat lungs. Regional pulmonary perfusion was measured by injection of 99mTc-macroaggregated albumin. Perfused volume was determined by comparing the volume of distribution of 99mTc-macroaggregated albumin to the anatomic lung volume obtained by small-animal CT. A second probe, 99mTc-labeled Duramycin, which binds to apoptotic cells, was used to measure pulmonary cell death in the same rat model. Results: The perfused volume of lung was decreased by about 25% at 1, 2, and 3 wk after receipt of 15 Gy, and 99mTc-Duramycin uptake was more than doubled at 2 and 3 wk. There was no change in body weight, breathing rate, or lung histology between irradiated and nonirradiated rats at these times. Pulmonary vascular resistance and vascular permeability measured in isolated perfused lungs ex vivo increased at 2 wk after 15 Gy of irradiation. Conclusion: Our results suggest that SPECT biomarkers have the potential to predict radiation injury to the lungs before substantial functional or histologic damage is observed. Early prediction of radiation pneumonitis in time to initiate mitigation will benefit those exposed to radiation in the context of therapy, accidents, or terrorism

    The implications of American chestnut reintroduction on landscape dynamics and carbon storage

    Get PDF
    In the eastern United States, American chestnut (Castanea dentata) was historically a major component of forest communities, but was functionally extirpated in the early 20th century by an introduced pathogen, chestnut blight (Cryphonectria parasitica). Because chestnut is fast-growing, long-lived, and resistant to decay, restoration of American chestnut using blight-resistant stock could have the potential to increase carbon sequestration or storage in forested landscapes. However, carbon dynamics are also affected by interspecific competition, succession, natural disturbance, and forest management activities, and it is unknown how chestnut restoration might interact with these other processes. We used the PnET-Succession extension of the LANDIS-II forest landscape model to study the implications of chestnut restoration on forest composition and carbon storage in the context of other disturbances, including timber harvest and insect pest outbreaks. Our results imply that it could take a millennium or more for chestnut to fully occupy landscapes without aggressive restoration efforts. When successful, chestnut restoration activities displaced other species approximately in proportion to their abundance on the landscape, rather than replacing a single species or genus (e.g., Quercus). Insect pests increased the rate of chestnut colonization by reducing the abundance of competitors, and also had a dominant effect on carbon dynamics. Although chestnut is fast-growing, moderately shade-tolerant, and decomposes very slowly, our results suggest that it can only modestly increase the carbon storage potential of eastern forests. However, our results also demonstrate that compositional changes in forest communities can have noticeable effects on biomass accumulation, even with the large uncertainties introduced by invasive pests

    Self-Adjusting Biofeedback with a Dynamic Feedback Signal Set (DyFSS)

    Get PDF
    A lack of control over their autonomic nervous system presents a major challenge for many children with Autism Spectrum Disorder (ASD). Autonomic biofeedback training is a promising treatment for managing anxiety and ASD symptoms more generally. We describe software that tunes four autonomic measurements to the best abilities and needs of each individual patient. Using this dynamic feedback signal set (DyFSS), a strength-based, self-customizing algorithm, we aim to address the autonomic heterogeneity of youth with ASD. The DyFSS may improve autonomic biofeedback training for the user by making it more understandable and easier to accomplish. Because it is self-adjusting, it may also ease the integration of autonomic biofeedback training into clinical work. Initial feasibility testing of this algorithm in youth with ASD with a five-session autonomic biofeedback training protocol showed improved behavior in relation to ASD symptoms Initial reactions show that youth with ASD are readily engaged through technological interventions such as autonomic biofeedback. Keywords— autism spectrum disorder; autonomi

    Combined hydration and antibiotics with lisinopril to mitigate acute and delayed high-dose radiation injuries to multiple organs

    Get PDF
    The NIAID Radiation and Nuclear Countermeasures Program is developing medical agents to mitigate the acute and delayed effects of radiation that may occur from a radionuclear attack or accident. To date, most such medical countermeasures have been developed for single organ injuries. Angiotensin converting enzyme (ACE) inhibitors have been used to mitigate radiation-induced lung, skin, brain and renal injuries in rats. ACE inhibitors have also been reported to decrease normal tissue complication in radiation oncology patients. In the current study we have developed a rat partial-body irradiation (leg-out PBI) model with minimal bone marrow sparing (one leg shielded) that results in acute and late injuries to multiple organs. In this model, the ACE inhibitor lisinopril (at ∼24 mg m-2 day-1 started orally in the drinking water at 7 days after irradiation and continued to ≥150 days) mitigated late effects in the lungs and kidneys after 12.5 Gy leg-out PBI. Also in this model, a short course of saline hydration and antibiotics mitigated acute radiation syndrome following doses as high as 13 Gy. Combining this supportive care with the lisinopril regimen mitigated overall morbidity for up to 150 days after 13 Gy leg-out PBI. Furthermore lisinopril was an effective mitigator in the presence of the growth factor G-CSF (100 μg kg-1 day-1 from days 1-14) which is FDA-approved for use in a radionuclear event. In summary, by combining lisinopril (FDA-approved for other indications) with hydration and antibiotics, we mitigated acute and delayed radiation injuries in multiple organs

    2D Kinetic Analysis of TCR and CD8 Coreceptor for LCMV GP33 Epitopes

    Get PDF
    The LCMV GP33 CD8 epitope has long been one of the most widely used antigens in viral immunology. Of note, almost all of the in vitro analyses of CD8 T cell responses to this epitope make use of an altered peptide ligand (APL) in which the cysteine from the original 9-mer peptide (KAVYNFATC) is substituted by a methionine at position 41 (KAVYNFATM). In addition, it is possible that the antigen processed during natural LCMV infection is an 11-mer peptide (KAVYNFATCGI) rather than the widely used 9-mer. Although previous affinity measurements using purified proteins for these antigen variants revealed minimal differences, we applied highly sensitive two dimensional (2D) biophysical based techniques to further dissect TCR interaction with these closely related GP33 variants. The kinetic analyses of affinity provided by the 2D micropipette adhesion frequency assay (2D-MP) and bond lifetime under force analyzed using a biomembrane force probe (BFP) revealed significant differences between 41M, 41C and the 11-mer 41CGI antigen. We found a hierarchy in 2D affinity as 41M peptide displayed augmented TCR 2D affinity compared to 41C and 41CGI. These differences were also maintained in the presence of CD8 coreceptor and when analysis of total TCR:pMHC and CD8:pMHC bonds were considered. Moreover, the three ligands displayed dramatic differences in the bond lifetimes generated under force, in particular the 41CGI variant with the lowest 2D affinity demonstrated a 15-fold synergistic contribution of the CD8 coreceptor to overall bond lifetime. Our analyses emphasize the sensitivity of single cell and single bond 2D kinetic measurements in distinguishing between related agonist peptides

    Improved Imputation of Common and Uncommon Single Nucleotide Polymorphisms (SNPs) with a New Reference Set

    Get PDF
    Statistical imputation of genotype data is an important technique for analysis of genome-wide association studies (GWAS). We have built a reference dataset to improve imputation accuracy for studies of individuals of primarily European descent using genotype data from the Hap1, Omni1, and Omni2.5 human SNP arrays (Illumina). Our dataset contains 2.5-3.1 million variants for 930 European, 157 Asian, and 162 African/African-American individuals. Imputation accuracy of European data from Hap660 or OmniExpress array content, measured by the proportion of variants imputed with R^2^>0.8, improved by 34%, 23% and 12% for variants with MAF of 3%, 5% and 10%, respectively, compared to imputation using publicly available data from 1,000 Genomes and International HapMap projects. The improved accuracy with the use of the new dataset could increase the power for GWAS by as much as 8% relative to genotyping all variants. This reference dataset is available to the scientific community through the NCBI dbGaP portal. Future versions will include additional genotype data as well as non-European populations

    Microbiota‐Dependent Metabolite Trimethylamine N‐Oxide and Coronary Artery Calcium in the Coronary Artery Risk Development in Young Adults Study (CARDIA)

    Get PDF
    BACKGROUND: Clinical studies implicate trimethylamine N-oxide (TMAO; a gut microbiota-dependent nutrient metabolite) in cardiovascular disease risk. There is a lack of population-based data on the role of TMAO in advancing early atherosclerotic disease. We tested the prospective associations between TMAO and coronary artery calcium (CAC) and carotid intima-media thickness (cIMT). METHODS AND RESULTS: Data were from the Coronary Artery Risk Development in Young Adults Study (CARDIA), a biracial cohort of US adults recruited in 1985-1986 (n=5115). We randomly sampled 817 participants (aged 33-55 years) who attended examinations in 2000-2001, 2005-2006, and 2010-2011, at which CAC was measured by computed tomography and cIMT (2005-2006) by ultrasound. TMAO was quantified using liquid chromotography mass spectrometry on plasma collected in 2000-2001. Outcomes were incident CAC, defined as Agatston units=0 in 2000-2001 and >0 over 10-year follow-up, CAC progression (any increase over 10-year follow-up), and continuous cIMT. Over the study period, 25% (n=184) of those free of CAC in 2000-2001 (n=746) developed detectable CAC. In 2000-2001, median (interquartile range) TMAO was 2.6 (1.8-4.2) μmol/L. In multivariable-adjusted models, TMAO was not associated with 10-year CAC incidence (rate ratio=1.03; 95% CI: 0.71-1.52) or CAC progression (0.97; 0.68-1.38) in Poisson regression, or cIMT (beta coefficient: -0.009; -0.03 to 0.01) in linear regression, comparing the fourth to the first quartiles of TMAO. CONCLUSIONS: In this population-based study, TMAO was not associated with measures of atherosclerosis: CAC incidence, CAC progression, or cIMT. These data indicate that TMAO may not contribute significantly to advancing early atherosclerotic disease risk among healthy early-middle-aged adults
    corecore