1,092 research outputs found

    Strong odd-frequency correlations in fully gapped Zeeman-split superconductors.

    Get PDF
    It is now well established that at a superconductor/ferromagnet (S/F) interface an unconventional superconducting state arises in which the pairing is odd-frequency. The hallmark signature of this superconducting state is generally understood to be an enhancement of the electronic density of states (DoS) at subgap energies close to the S/F interface. However, here we show that an odd frequency state can be present even if the DoS is fully gapped. As an example, we show that this is the case in the pioneering S/FI (where FI is a insulating ferromagnet) tunneling experiments of Meservey and Tedrow, and we derive a generalized analytical criterium to describe the effect of odd-frequency pairing on the DoS. Finally, we propose a simple experiment in which odd-frequency pairing in a Zeeman-split superconductor can be unambiguously detected via the application of an external magnetic field.J.L was supported by the Research Council of Norway, Grants No. 205591 and 216700 and the ”Outstanding Academic Fellows” programme at NTNU. J.W.A.R. acknowledges financial support from the Royal Society (”Superconducting Spintronics”) and through a Leverhulme Trust International Network Grant (grant IN-2013-033).This is the final version of the article. It first appeared from NPG via http://dx.doi.org/10.1038/srep1548

    Controlling spin supercurrents via nonequilibrium spin injection.

    Get PDF
    We propose a mechanism whereby spin supercurrents can be manipulated in superconductor/ferromagnet proximity systems via nonequilibrium spin injection. We find that if a spin supercurrent exists in equilibrium, a nonequilibrium spin accumulation will exert a torque on the spins transported by this current. This interaction causes a new spin supercurrent contribution to manifest out of equilibrium, which is proportional to and polarized perpendicularly to both the injected spins and the equilibrium spin current. This is interesting for several reasons: as a fundamental physical effect; due to possible applications as a way to control spin supercurrents; and timeliness in light of recent experiments on spin injection in proximitized superconductors

    Electric control of superconducting transition through a spin-orbit coupled interface.

    Get PDF
    We demonstrate theoretically all-electric control of the superconducting transition temperature using a device comprised of a conventional superconductor, a ferromagnetic insulator, and semiconducting layers with intrinsic spin-orbit coupling. By using analytical calculations and numerical simulations, we show that the transition temperature of such a device can be controlled by electric gating which alters the ratio of Rashba to Dresselhaus spin-orbit coupling. The results offer a new pathway to control superconductivity in spintronic devices.J.L. and J.A.O. acknowledge funding via the “Outstanding Academic Fellows” programme at NTNU, the COST Action MP-1201 and the Research Council of Norway Grant numbers 205591, 216700, and 240806. J.W.A.R. and A.D.B. acknowledge funding from the Leverhulme Trust (IN-2013-033), the Royal Society and the EPSRC through the Programme Grant “Superconducting Spintronics” (EP/N017242/1), and the Doctoral Training Grant (NanoDTC EP/G037221/1

    Feller Processes: The Next Generation in Modeling. Brownian Motion, L\'evy Processes and Beyond

    Get PDF
    We present a simple construction method for Feller processes and a framework for the generation of sample paths of Feller processes. The construction is based on state space dependent mixing of L\'evy processes. Brownian Motion is one of the most frequently used continuous time Markov processes in applications. In recent years also L\'evy processes, of which Brownian Motion is a special case, have become increasingly popular. L\'evy processes are spatially homogeneous, but empirical data often suggest the use of spatially inhomogeneous processes. Thus it seems necessary to go to the next level of generalization: Feller processes. These include L\'evy processes and in particular Brownian motion as special cases but allow spatial inhomogeneities. Many properties of Feller processes are known, but proving the very existence is, in general, very technical. Moreover, an applicable framework for the generation of sample paths of a Feller process was missing. We explain, with practitioners in mind, how to overcome both of these obstacles. In particular our simulation technique allows to apply Monte Carlo methods to Feller processes.Comment: 22 pages, including 4 figures and 8 pages of source code for the generation of sample paths of Feller processe

    Mitigating the effects of COVID-19 on HIV treatment and care in Lusaka, Zambia: A before-after cohort study using mixed effects regression

    Get PDF
    INTRODUCTION: The Zambian Ministry of Health (MoH) issued COVID-19 mitigation guidance for HIV care immediately after the first COVID-19 case was confirmed in Zambia on 18 March 2020. The Centre for Infectious Disease Research in Zambia implemented MoH guidance by: 1) extending antiretroviral therapy (ART) refill duration to 6 multi-month dispensation (6MMD) and 2) task-shifting communication and mobilisation of those in HIV care to collect their next ART refill early. We assessed the impact of COVID-19 mitigation guidance on HIV care 3 months before and after guidance implementation. METHODS: We reviewed all ART pharmacy visit data in the national HIV medical record for PLHIV in care having ≄1 visit between 1 January-30 June 2020 at 59 HIV care facilities in Lusaka Province, Zambia. We undertook a before-after evaluation using mixed-effects Poisson regression to examine predictors and marginal probability of early clinic return (pharmacy visit \u3e7 days before next appointment), proportion of late visit (\u3e7 days late for next appointment) and probability of receiving a 6MMD ART refill. RESULTS: A total of 101 371 individuals (64% female, median age 39) with 130 486 pharmacy visits were included in the analysis. We observed a significant increase in the adjusted prevalence ratio (4.63; 95% CI 4.45 to 4.82) of early return before compared with after guidance implementation. Receipt of 6MMD increased from a weekly mean of 47.9% (95% CI 46.6% to 49.2%) before to 73.4% (95% CI 72.0% to 74.9%) after guidance implementation. The proportion of late visits (8-89 days late) was significantly higher before (18.8%, 95% CI17.2%to20.2%) compared with after (15.1%, 95% CI13.8%to16.4%) guidance implementation . CONCLUSIONS: Timely issuance and implementation of COVID-19 mitigation guidance involving task-shifted patient communication and mobilisation alongside 6MMD significantly increased early return to ART clinic, potentially reducing interruptions in HIV care during a global public health emergency

    PhotoAffinity bits : a photoaffinity-based fragment screening platform for efficient identification of protein ligands

    Get PDF
    Advances in genomic analyses enable the identification of new proteins that are associated with disease. To validate these targets, tool molecules are required to demonstrate that a ligand can have a disease-modifying effect. Currently, as tools are reported for only a fraction of the proteome, platforms for ligand discovery are essential to leverage insights from genomic analyses. Fragment screening offers an efficient approach to explore chemical space, however, it remains challenging to develop techniques that are both sufficiently high-throughput and sensitive. We present a fragment screening platform, termed PhABits (PhotoAffinity Bits), which utilises a library of photoreactive fragments to covalently capture fragment-protein interactions. Hits can be profiled to determine potency and site of crosslinking, and subsequently developed as reporters in a competitive displacement assay to identify novel hit matter. We envision that the PhABits will be widely applicable to novel protein targets, identifying starting points in the development of therapeutic

    MicroRNAs targeting oncogenes are down-regulated in pancreatic malignant transformation from benign tumors

    Get PDF
    BACKGROUND MicroRNA (miRNA) expression profiles have been described in pancreatic ductal adenocarcinoma (PDAC), but these have not been compared with pre-malignant pancreatic tumors. We wished to compare the miRNA expression signatures in pancreatic benign cystic tumors (BCT) of low and high malignant potential with PDAC, in order to identify miRNAs deregulated during PDAC development. The mechanistic consequences of miRNA dysregulation were further evaluated. METHODS Tissue samples were obtained at a tertiary pancreatic unit from individuals with BCT and PDAC. MiRNA profiling was performed using a custom microarray and results were validated using RT-qPCR prior to evaluation of miRNA targets. RESULTS Widespread miRNA down-regulation was observed in PDAC compared to low malignant potential BCT. We show that amongst those miRNAs down-regulated, miR-16, miR-126 and let-7d regulate known PDAC oncogenes (targeting BCL2, CRK and KRAS respectively). Notably, miR-126 also directly targets the KRAS transcript at a "seedless" binding site within its 3'UTR. In clinical specimens, miR-126 was strongly down-regulated in PDAC tissues, with an associated elevation in KRAS and CRK proteins. Furthermore, miR-21, a known oncogenic miRNA in pancreatic and other cancers, was not elevated in PDAC compared to serous microcystic adenoma (SMCA), but in both groups it was up-regulated compared to normal pancreas, implicating early up-regulation during malignant change. CONCLUSIONS Expression profiling revealed 21 miRNAs down-regulated in PDAC compared to SMCA, the most benign lesion that rarely progresses to invasive carcinoma. It appears that miR-21 up-regulation is an early event in the transformation from normal pancreatic tissue. MiRNA expression has the potential to distinguish PDAC from normal pancreas and BCT. Mechanistically the down-regulation of miR-16, miR-126 and let-7d promotes PDAC transformation by post-transcriptional up-regulation of crucial PDAC oncogenes. We show that miR-126 is able to directly target KRAS; re-expression has the potential as a therapeutic strategy against PDAC and other KRAS-driven cancers

    Transition between canted antiferromagnetic and spin-polarized ferromagnetic quantum Hall states in graphene on a ferrimagnetic insulator

    Get PDF
    In the quantum Hall regime of graphene, antiferromagnetic and spin-polarized ferromagnetic states at the zeroth Landau level compete, leading to a canted antiferromagnetic state depending on the direction and magnitude of an applied magnetic field. Here, we investigate this transition at 2.7 K in graphene Hall bars that are proximity coupled to the ferrimagnetic insulator Y3Fe5O12. From nonlocal transport measurements, we demonstrate an induced magnetic exchange field in graphene, which lowers the magnetic field required to modulate the magnetic state in graphene. These results show that a magnetic proximity effect in graphene is an important ingredient for the development of two-dimensional materials in which it is desirable for ordered states of matter to be tunable with relatively small applied magnetic fields (> 6 T)
    • 

    corecore