874 research outputs found

    High-Performance Silicon-Based Multiple Wavelength Source

    Full text link
    We demonstrate a stable CMOS-compatible on-chip multiple-wavelength source by filtering and modulating individual lines from a frequency comb generated by a microring resonator optical parametric oscillator.. We show comb operation in a low-noise state that is stable and usable for many hours. Bit-error rate measurements demonstrate negligible power penalty from six independent frequencies when compared to a tunable diode laser baseline. Open eye diagrams confirm the fidelity of the 10 Gb/s data transmitted at the comb frequencies and the suitability of this device for use as a fully integrated silicon-based WDM source.Comment: 3 pages, 3 figure

    Determination of the phase of an electromagnetic field via incoherent detection of fluorescence

    Full text link
    We show that the phase of a field can be determined by incoherent detection of the population of one state of a two-level system if the Rabi frequency is comparable to the Bohr frequency so that the rotating wave approximation is inappropriate. This implies that a process employing the measurement of population is not a square-law detector in this limit. We discuss how the sensitivity of the degree of excitation to the phase of the field may pose severe constraints on precise rotations of quantum bits involving low-frequency transitions. We present a scheme for observing this effect in an atomic beam, despite the spread in the interaction time.Comment: 4 pages, 2 fig

    Strong polarization mode coupling in microresonators

    Full text link
    We observe strong modal coupling between the TE00 and TM00 modes in Si3N4 ring resonators revealed by avoided crossings of the corresponding resonances. Such couplings result in significant shifts of the resonance frequencies over a wide range around the crossing points. This leads to an effective dispersion that is one order of magnitude larger than the intrinsic dispersion and creates broad windows of anomalous dispersion. We also observe the changes to frequency comb spectra generated in Si3N4 microresonators due polarization mode and higher-order mode crossings and suggest approaches to avoid these effects. Alternatively, such polarization mode-crossings can be used as a novel tool for dispersion engineering in microresonators.Comment: Comments are very welcome (send to corresponding author

    Second-Harmonic Generation in Silicon Nitride Ring Resonators

    Full text link
    The emerging field of silicon photonics seeks to unify the high bandwidth of optical communications with CMOS microelectronic circuits. Many components have been demonstrated for on-chip optical communications, including those that utilize the nonlinear optical properties of silicon[1, 2], silicon dioxide[3, 4] and silicon nitride[5, 6]. Processes such as second harmonic generation, which are enabled by the second-order susceptibility, have not been developed since the bulk χ(2)\chi^{(2)} vanishes in these centrosymmetric CMOS materials. Generating the lowest-order nonlinearity would open the window to a new array of CMOS-compatible optical devices capable of nonlinear functionalities not achievable with the?χ(3)\chi^{(3)} response such as electro-optic modulation, sum frequency up-conversion, and difference frequency generation. Here we demonstrate second harmonic (SH) generation in CMOS compatible integrated silicon nitride (Si3N4) waveguides. The χ(2)\chi^{(2)} response is induced in the centrosymmetric material by using the nanoscale structure to break the bulk symmetry. We use a high quality factor Q ring resonator cavity to enhance the efficiency of the nonlinear optical process and detect SH output with milliwatt input powers.Comment: 4 pages, 3 figure

    A mouse model of autism implicates endosome pH in the regulation of presynaptic calcium entry.

    Get PDF
    Psychoactive compounds such as chloroquine and amphetamine act by dissipating the pH gradient across intracellular membranes, but the physiological mechanisms that normally regulate organelle pH remain poorly understood. Interestingly, recent human genetic studies have implicated the endosomal Na+/H+ exchanger NHE9 in both autism spectrum disorders (ASD) and attention deficit hyperactivity disorder (ADHD). Plasma membrane NHEs regulate cytosolic pH, but the role of intracellular isoforms has remained unclear. We now find that inactivation of NHE9 in mice reproduces behavioral features of ASD including impaired social interaction, repetitive behaviors, and altered sensory processing. Physiological characterization reveals hyperacidic endosomes, a cell-autonomous defect in glutamate receptor expression and impaired neurotransmitter release due to a defect in presynaptic Ca2+ entry. Acute inhibition of synaptic vesicle acidification rescues release but without affecting the primary defect due to loss of NHE9

    Expanding the Entamoeba Universe: New Hosts Yield Novel Ribosomal Lineages.

    Get PDF
    Removing the requirement for cell culture has led to a substantial increase in the number of lineages of Entamoeba recognized as distinct. Surveying the range of potential host species for this parasite genus has barely been started and it is clear that additional sampling of the same host in different locations often identifies additional diversity. In this study, using small subunit ribosomal RNA gene sequencing, we identify four new lineages of Entamoeba, including the first report of Entamoeba from an elephant, and extend the host range of some previously described lineages. In addition, examination of microbiome data from a number of host animals suggests that substantial Entamoeba diversity remains to be uncovered

    A Silicon-Based Monolithic Optical Frequency Comb Source

    Full text link
    Recently developed techniques for generating precisely equidistant optical frequencies over broad wavelength ranges are revolutionizing precision physical measurement [1-3]. These frequency "combs" are produced primarily using relatively large, ultrafast laser systems. However, recent research has shown that broad-bandwidth combs can be produced using highly-nonlinear interactions in microresonator optical parametric oscillators [4-11]. Such devices not only offer the potential for developing extremely compact optical atomic clocks but are also promising for astronomical spectroscopy [12-14], ultrashort pulse shaping [15], and ultrahigh-speed communications systems. Here we demonstrate the generation of broad-bandwidth optical frequency combs from a CMOS-compatible integrated microresonator [16,17], which is a fully-monolithic and sealed chip-scale device making it insensitive to the surrounding environment. We characterize the comb quality using a novel self-referencing method and verify that the comb line frequencies are equidistant over a bandwidth that is nearly an order of magnitude larger than previous measurements. In addition, we investigate the ultrafast temporal properties of the comb and demonstrate its potential to serve as a chip-scale source of ultrafast (sub-ps) pulses
    • …
    corecore