691 research outputs found

    Dose-dependent effects of Allopurinol on human foreskin fibroblast cell and human umbilical vein endothelial cell under hypoxia

    Get PDF
    Allopurinol, an inhibitor of xanthine oxidase, has been used in clinical trials of patients with cardiovascular and chronic kidney disease. These are two pathologies with extensive links to hypoxia and activation of the transcription factor hypoxia inducible factor (HIF) family. Here we analysed the effects of allopurinol treatment in two different cellular models, and their response to hypoxia. We explored the dose-dependent effect of allopurinol on Human Foreskin Fibroblasts (HFF) and Human Umbilical Vein Endothelial Cells (HUVEC) under hypoxia and normoxia. Under normoxia and hypoxia, high dose allopurinol reduced the accumulation of HIF-1Ξ± protein in HFF and HUVEC cells. Allopurinol had only marginal effects on HIF-1Ξ± mRNA level in both cellular systems. Interestingly, allopurinol effects over the HIF system were independent of prolyl-hydroxylase activity. Finally, allopurinol treatment reduced angiogenesis traits in HUVEC cells in an in vitro model. Taken together these results indicate that high doses of allopurinol inhibits the HIF system and pro-angiogenic traits in cells

    Structural and functional characterization of Pseudomonas aeruginosa CupB chaperones

    Get PDF
    Pseudomonas aeruginosa, an important human pathogen, is estimated to be responsible for,10% of nosocomial infections worldwide. The pathogenesis of P. aeruginosa starts from its colonization in the damaged tissue or medical devices (e. g. catheters, prothesis and implanted heart valve etc.) facilitated by several extracellular adhesive factors including fimbrial pili. Several clusters containing fimbrial genes have been previously identified on the P. aeruginosa chromosome and named cup [1]. The assembly of the CupB pili is thought to be coordinated by two chaperones, CupB2 and CupB4. However, due to the lack of structural and biochemical data, their chaperone activities remain speculative. In this study, we report the 2.5 A crystal structure of P. aeruginosa CupB2. Based on the structure, we further tested the binding specificity of CupB2 and CupB4 towards CupB1 (the presumed major pilus subunit) and CupB6 (the putative adhesin) using limited trypsin digestion and strep-tactin pull-down assay. The structural and biochemical data suggest that CupB2 and CupB4 might play different, but not redundant, roles in CupB secretion. CupB2 is likely to be the chaperone of CupB1, and CupB4 could be the chaperone of CupB4:CupB5:CupB6, in which the interaction of CupB4 and CupB6 might be mediated via CupB5

    Form factor Ο€0β†’Ξ³βˆ—+Ξ³βˆ—\pi^0\to \gamma^* +\gamma^* at different photon virtualities

    Full text link
    The Ο€0Ξ³Ξ³\pi^0 \gamma\gamma vertex for virtual photons of squared masses q12q_1^2 and q22q_2^2 plays a vital r\^ole in several physical processes; for example for q12<0q_1^2<0, q22<0q_2^2<0, in the two-photon physics reaction e+eβˆ’β†’e+eβˆ’Ο€0e^+ e^-\to e^+ e^- \pi^0, and for q12>0q_1^2>0, q22>0q_2^2>0, in the annihilation process e+eβˆ’β†’Ο€0l+lβˆ’e^+ e^-\to \pi^0 l^+ l^-. It is also of interest because of its link to the axial anomaly. We suggest a new approach to this problem. We have obtained a closed analytic expression for the vertex in the limit in which at least one of ∣q12∣|q_1^2| and ∣q22∣|q_2^2| is large for arbitrary fixed values of the ratio q12/q22q_1^2/q_2^2. We compare our results with those obtained previously by Brodsky and Lepage. It should be straightforward to test our predictions experimentally.Comment: harvmac tex, 30 pages, 11 figures; references are correcte

    The structure of the PapD-PapGII pilin complex reveals an open and flexible P5 pocket

    Get PDF
    P pili are hairlike polymeric structures that mediate binding of uropathogenic Escherichia coli to the surface of the kidney via the PapG adhesin at their tips. PapG is composed of two domains: a lectin domain at the tip of the pilus followed by a pilin domain that comprises the initial polymerizing subunit of the 1,000-plus-subunit heteropolymeric pilus fiber. Prior to assembly, periplasmic pilin domains bind to a chaperone, PapD. PapD mediates donor strand complementation, in which a beta strand of PapD temporarily completes the pilin domain's fold, preventing premature, nonproductive interactions with other pilin subunits and facilitating subunit folding. Chaperone-subunit complexes are delivered to the outer membrane usher where donor strand exchange (DSE) replaces PapD's donated beta strand with an amino-terminal extension on the next incoming pilin subunit. This occurs via a zip-in-zip-out mechanism that initiates at a relatively accessible hydrophobic space termed the P5 pocket on the terminally incorporated pilus subunit. Here, we solve the structure of PapD in complex with the pilin domain of isoform II of PapG (PapGIIp). Our data revealed that PapGIIp adopts an immunoglobulin fold with a missing seventh strand, complemented in parallel by the G1 PapD strand, typical of pilin subunits. Comparisons with other chaperone-pilin complexes indicated that the interactive surfaces are highly conserved. Interestingly, the PapGIIp P5 pocket was in an open conformation, which, as molecular dynamics simulations revealed, switches between an open and a closed conformation due to the flexibility of the surrounding loops. Our study reveals the structural details of the DSE mechanism

    Redox-freezing and nucleation of diamond via magnetite formation in the Earth’s mantle

    Get PDF
    Diamonds and their inclusions are unique probes into the deep Earth, tracking the deep carbon cycle to >800 km. Understanding the mechanisms of carbon mobilization and freezing is a prerequisite for quantifying the fluxes of carbon in the deep Earth. Here we show direct evidence for the formation of diamond by redox reactions involving FeNi sulfides. Transmission Kikuchi Diffraction identifies an arrested redox reaction from pyrrhotite to magnetite included in diamond. The magnetite corona shows coherent epitaxy with relict pyrrhotite and diamond, indicating that diamond nucleated on magnetite. Furthermore, structures inherited from h-Fe3O4 define a phase transformation at depths of 320–330 km, the base of the Kaapvaal lithosphere. The oxidation of pyrrhotite to magnetite is an important trigger of diamond precipitation in the upper mantle, explaining the presence of these phases in diamonds

    A Filamentous Hemagglutinin-Like Protein of Xanthomonas axonopodis pv. citri, the Phytopathogen Responsible for Citrus Canker, Is Involved in Bacterial Virulence

    Get PDF
    Xanthomonas axonopodis pv. citri, the phytopathogen responsible for citrus canker has a number of protein secretion systems and among them, at least one type V protein secretion system belonging to the two-partner secretion pathway. This system is mainly associated to the translocation of large proteins such as adhesins to the outer membrane of several pathogens. Xanthomonas axonopodis pv. citri possess a filamentous hemagglutinin-like protein in close vicinity to its putative transporter protein, XacFhaB and XacFhaC, respectively. Expression analysis indicated that XacFhaB was induced in planta during plant-pathogen interaction. By mutation analysis of XacFhaB and XacFhaC genes we determined that XacFhaB is involved in virulence both in epiphytic and wound inoculations, displaying more dispersed and fewer canker lesions. Unexpectedly, the XacFhaC mutant in the transporter protein produced an intermediate virulence phenotype resembling wild type infection, suggesting that XacFhaB could be secreted by another partner different from XacFhaC. Moreover, XacFhaB mutants showed a general lack of adhesion and were affected in leaf surface attachment and biofilm formation. In agreement with the in planta phenotype, adhesin lacking cells moved faster in swarming plates. Since no hyperflagellation phenotype was observed in this bacteria, the faster movement may be attributed to the lack of cell-to-cell aggregation. Moreover, XacFhaB mutants secreted more exopolysaccharide that in turn may facilitate its motility. Our results suggest that this hemagglutinin-like protein is required for tissue colonization being mainly involved in surface attachment and biofilm formation, and that plant tissue attachment and cell-to-cell aggregation are dependent on the coordinated action of adhesin molecules and exopolysaccharides

    Mutation Detection with Next-Generation Resequencing through a Mediator Genome

    Get PDF
    The affordability of next generation sequencing (NGS) is transforming the field of mutation analysis in bacteria. The genetic basis for phenotype alteration can be identified directly by sequencing the entire genome of the mutant and comparing it to the wild-type (WT) genome, thus identifying acquired mutations. A major limitation for this approach is the need for an a-priori sequenced reference genome for the WT organism, as the short reads of most current NGS approaches usually prohibit de-novo genome assembly. To overcome this limitation we propose a general framework that utilizes the genome of relative organisms as mediators for comparing WT and mutant bacteria. Under this framework, both mutant and WT genomes are sequenced with NGS, and the short sequencing reads are mapped to the mediator genome. Variations between the mutant and the mediator that recur in the WT are ignored, thus pinpointing the differences between the mutant and the WT. To validate this approach we sequenced the genome of Bdellovibrio bacteriovorus 109J, an obligatory bacterial predator, and its prey-independent mutant, and compared both to the mediator species Bdellovibrio bacteriovorus HD100. Although the mutant and the mediator sequences differed in more than 28,000 nucleotide positions, our approach enabled pinpointing the single causative mutation. Experimental validation in 53 additional mutants further established the implicated gene. Our approach extends the applicability of NGS-based mutant analyses beyond the domain of available reference genomes

    Inferring stabilizing mutations from protein phylogenies : application to influenza hemagglutinin

    Get PDF
    One selection pressure shaping sequence evolution is the requirement that a protein fold with sufficient stability to perform its biological functions. We present a conceptual framework that explains how this requirement causes the probability that a particular amino acid mutation is fixed during evolution to depend on its effect on protein stability. We mathematically formalize this framework to develop a Bayesian approach for inferring the stability effects of individual mutations from homologous protein sequences of known phylogeny. This approach is able to predict published experimentally measured mutational stability effects (ΔΔG values) with an accuracy that exceeds both a state-of-the-art physicochemical modeling program and the sequence-based consensus approach. As a further test, we use our phylogenetic inference approach to predict stabilizing mutations to influenza hemagglutinin. We introduce these mutations into a temperature-sensitive influenza virus with a defect in its hemagglutinin gene and experimentally demonstrate that some of the mutations allow the virus to grow at higher temperatures. Our work therefore describes a powerful new approach for predicting stabilizing mutations that can be successfully applied even to large, complex proteins such as hemagglutinin. This approach also makes a mathematical link between phylogenetics and experimentally measurable protein properties, potentially paving the way for more accurate analyses of molecular evolution

    Childhood exposure due to the Chernobyl accident and thyroid cancer risk in contaminated areas of Belarus and Russia

    Get PDF
    The thyroid dose due to 131I releases during the Chernobyl accident was reconstructed for children and adolescents in two cities and 2122 settlements in Belarus, and in one city and 607 settlements in the Bryansk district of the Russian Federation. In this area, which covers the two high contamination spots in the two countries following the accident, data on thyroid cancer incidence during the period 1991-1995 were analysed in the light of possible increased thyroid surveillance. Two methods of risk analysis were applied: Poisson regression with results for the single settlements and Monte Carlo (MC) calculations for results in larger areas or sub-populations. Best estimates of both methods agreed well. Poisson regression estimates of 95% confidence intervals (CIs) were considerably smaller than the MC results, which allow for extra-Poisson uncertainties due to reconstructed doses and the background thyroid cancer incidence. The excess absolute risk per unit thyroid dose (EARPD) for the birth cohort 1971-1985 by the MC analysis was 2.1 (95% CI 1.0-4.5) cases per 10(4) person-year Gy. The point estimate is lower by a factor of two than that observed in a pooled study of thyroid cancer risk after external exposures. The excess relative risk per unit thyroid dose was 23 (95% CI 8.6-82) Gy(-1). No significant differences between countries or cities and rural areas were found. In the lowest dose group of the settlements with an average thyroid dose of 0.05 Gy the risk was statistically significantly elevated. Dependencies of risks on age-at-exposure and on gender are consistent with findings after external exposures
    • …
    corecore