268 research outputs found

    Digital micromirror devices for laser-based manufacturing

    No full text
    Digital Micromirror Devices (DMDs), containing arrays of around one million individually-controllable ~10µm square mirrors, provide an extremely cost-effective and practical method to modulate the spatial beam profile of a pulsed laser source for both additive and subtractive laser processing and printing. When demagnified by a factor of ~100 in one dimension (hence ~10,000 in area) a ~1mJ/cm2 laser pulse reflected from the mirrors on the DMD surface that are switched to the 'on' position, attains a fluence of ~10J/cm2 at the workpiece, which is more than sufficient to ablate most materials of interest to the laser-manufacturing community. More familiar in the context of high values of magnification by the laser projection industry, reversing the role to use them for equally high values of demagnification opens up a wealth of possibilities for ablation, multiphoton polymerization, security marking and fabrication of features that perhaps surprisingly can be well below the wavelength of the laser used. Of key relevance is that very high-resolution patterning can be achieved by a single laser pulse, and step-and-repeat processes, when combined with the refresh rates of the DMD pattern that are currently at the 30kHz level, open up the possibility of processing areas of up to 1cm2 per second with micron-scale resolution where each ~100µm x 100µm area patterned per pulse can display arbitrary pixelated content. We will discuss the application of DMD-baser laser processing to the following areas of interest to the laser-manufacturing community

    Percutaneous Cervical Vertebroplasty in a MultifunctionalImage-Guided Therapy Suite: Hybrid Lateral Approach to C1 andC4 Under CT and Fluoroscopic Guidance

    Get PDF
    A 76-year-old patient suffering from two painful osteolytic metastases in C1 and C4 underwent percutaneous vertebroplasty by a hybrid technique in a multi-functional image-guided therapy suite (MIGTS). Two trocars were first placed into the respective bodies of C1 and C4 under fluoroscopic computed tomography guidance using a lateral approach. Thereafter, the patient was transferred on a moving table to the digital subtraction angiography unit in the same room for implant injection. Good pain relief was achieved by this minimally invasive procedure without complications. A hybrid approach for vertebroplasty in a MIGTS appears to be safe and feasible and might be indicated in selected cases for difficult accessible lesion

    Multi-shot laser ablation and digital micromirror device mask translation for sub-diffraction-limit machining resolution

    No full text
    Digital Micromirror Devices (DMDs) can offer rapidly generated, bespoke intensity modulation masks for image-projection-based laser-machining. Recent work has shown repeatable sub-micron feature patterning [1], with proposed applications in the medical sciences and photonics. While DMDs can offer rapid patterning, with ~32kHz switching speeds available [2], they are not yet efficient reflectors at <300nm, thus limiting machining resolution to the diffraction limit at the near-visible wavelengths and above

    Femtosecond laser-induced patterned transfer of intact semiconductor and polymer thin films via a digital micromirror device

    No full text
    The laser-induced forward transfer (LIFT) of thin films is an attractive technique to deposit materials on a size scale that can span nanometres to millimeters. During LIFT, the energy of a laser pulse is absorbed in a small volume of a thin film (donor) causing an explosive expansion which is used to propel a portion of the donor away from the carrier substrate and transfer it onto a receiver substrate as shown in Fig.1(a). Ultrashort laser systems can limit laser damage to remaining areas of the donor usually present using laser systems with longer (nanosecond) pulse widths

    Simultaneous patterning and deposition of thin films via femtosecond laser-induced transfer using a digital micromirror device for spatial pulse shaping

    No full text
    The forward and backward femtosecond laser-induced transfer of thin films in an intact state with good adhesion, via a digital micromirror array acting as a dynamic object mask for spatial beam shaping is presented

    Yb:YAG planar waveguide lasers grown by pulsed laser deposition: 70% slope efficiencies at 16 W of output power

    No full text
    We present our recent advances in the use of pulsed laser deposition (PLD) to fabricate active gain elements for use as amplifiers and laser oscillators. Record output powers exceeding 16 W and slope efficiencies of 70% are reported for optimized epitaxial growth of Yb(7.5%):YAG on to YAG substrates. We show for the first time that the performance of PLD material can meet or even exceed that of materials grown by more established methods such as the Czochralski technique. Details of fabrication, characterization and laser performance are presented in addition to outlining expected future improvements

    Comparative study of rare-earth doped sesquioxides grown by pulsed laser deposition and their performance as planar waveguide lasers

    No full text
    The sesquioxides yttria, scandia and lutetia have been identified as promising host materials for high power lasers due to their excellent thermal properties, their ability to incorporate RE-ions and their resulting spectroscopic properties [1]. However, the melting points of these materials exceed 2400°C and are therefore problematic to grow from the melt. Pulsed laser deposition (PLD) is an alternative method of growing thin crystalline films of these materials, avoiding the requirement for such high temperature growth

    Physiological and pathophysiological concentrations of fatty acids induce lipid droplet accumulation and impair functional performance of tissue engineered skeletal muscle

    Get PDF
    Fatty acids (FA) exert physiological and pathophysiological effects leading to changes in skeletal muscle metabolism and function, however, in vitro models to investigate these changes are limited. These experiments sought to establish the effects of physiological and pathophysiological concentrations of exogenous FA upon the function of tissue engineered skeletal muscle (TESkM). Cultured initially for 14 days, C2C12 TESkM was exposed to FA‐free bovine serum albumin alone or conjugated to a FA mixture (oleic, palmitic, linoleic, and α‐linoleic acids [OPLA] [ratio 45:30:24:1%]) at different concentrations (200 or 800 µM) for an additional 4 days. Subsequently, TESkM morphology, functional capacity, gene expression and insulin signaling were analyzed. There was a dose response increase in the number and size of lipid droplets within the TESkM (p < .05). Exposure to exogenous FA increased the messenger RNA expression of genes involved in lipid storage (perilipin 2 [p < .05]) and metabolism (pyruvate dehydrogenase lipoamide kinase isozyme 4 [p < .01]) in a dose dependent manner. TESkM force production was reduced (tetanic and single twitch) (p < .05) and increases in transcription of type I slow twitch fiber isoform, myosin heavy chain 7, were observed when cultured with 200 µM OPLA compared to control (p < .01). Four days of OPLA exposure results in lipid accumulation in TESkM which in turn results in changes in muscle function and metabolism; thus, providing insight ito the functional and mechanistic changes of TESkM in response to exogenous FA.</div

    Nanofabrication technologies: high-throughput for tomorrow's metadevices

    No full text
    Fabrication fundamentals1. Serial versus parallel? Most are currently fabricated by serial writing….2. Additive or subtractive?3. Feature size required.4. One-off demonstration (journal paper) or volume production (in the shops by next Christmas…)5. What material?6. Cost….(+ normalise to 150mm diameter wafer)7. Time to fabricat
    corecore