3,231 research outputs found

    A theoretical approach to predicting the success of genetic manipulation of malaria mosquitoes in malaria control

    Get PDF
    BACKGROUND: Mosquitoes that have been genetically modified to better encapsulate the malaria parasite Plasmodium falciparum are being considered as a possible tool in the control of malaria. Hopes for this have been raised with the identification of genes involved in the encapsulation response and with advances in the tools required to transform mosquitoes. However, we have only very little understanding of the conditions that would allow such genes to spread in natural populations. METHODS: We present here a theoretical model that combines population genetical and epidemiological processes, thereby allowing one to predict not only these conditions (intensity of transmission, evolutionary cost of resistance, tools used to drive the genes) but also the impact of the spread of refractoriness on the prevalence of the disease. RESULTS: The main conclusions are 1) that efficient transposons will generally be able to drive genes that confer refractoriness through populations even if there is a substantial (evolutionary) cost of refractoriness, but 2) that this will decrease malaria prevalence in the human population substantially only if refractoriness is close to 100% effective. CONCLUSIONS: If refractoriness is less than 100% effective (because of, for example, environmentally induced variation in the effectiveness of the mosquito's immune response), control programmes based on genetic manipulation of mosquitoes will have very little impact on the epidemiology of malaria, at least in areas with intense transmission

    Adjusting the cation and anion nature in ionic liquids used for the growth control of nanoparticles of organic conductors

    Get PDF
    Ionic liquids are used for controlling the growth of organic conductors as nanoparticles. We review the conditions of preparation of nanoparticles of conductors derived from tetrathiafulvalene (TTF), tetramethyltetraselenafulvalene (TMTSF) and bis-ethylenedithiotetrathiafulvalene (BEDT-TTF). They are prepared by electrocrystallization using an ionic liquid supporting electrolyte in which the cation plays the role of growth controller and the anion enters the composition of the expected organic conductor. Stable suspensions of nanoparticles are obtained in one case, a valuable characteristic for potential applications in electronic devices

    Quantum Magnetism and Topological Superconductivity in Yu-Shiba-Rusinov Chains

    Get PDF
    Chains of magnetic adatoms on superconductors have been discussed as promising systems for realizing Majorana end states. Here, we show that dilute Yu-Shiba-Rusinov (YSR) chains are also a versatile platform for quantum magnetism and correlated electron dynamics, with widely adjustable spin values and couplings. Focusing on subgap excitations, we derive an extended t−J model for dilute quantum YSR chains and use it to study the phase diagram as well as tunneling spectra. We explore the implications of quantum magnetism for the formation of a topological superconducting phase, contrasting it to existing models assuming classical spin textures

    Matrix metalloproteinases in atrial fibrillation: Reply

    Get PDF
    • 

    corecore