23,719 research outputs found
New path description for the M(k+1,2k+3) models and the dual Z_k graded parafermions
We present a new path description for the states of the non-unitary
M(k+1,2k+3) models. This description differs from the one induced by the
Forrester-Baxter solution, in terms of configuration sums, of their
restricted-solid-on-solid model. The proposed path representation is actually
very similar to the one underlying the unitary minimal models M(k+1,k+2), with
an analogous Fermi-gas interpretation. This interpretation leads to fermionic
expressions for the finitized M(k+1,2k+3) characters, whose infinite-length
limit represent new fermionic characters for the irreducible modules. The
M(k+1,2k+3) models are also shown to be related to the Z_k graded parafermions
via a (q to 1/q) duality transformation.Comment: 43 pages (minor typo corrected and minor rewording in the
introduction
Environments and Morphologies of Red Sequence Galaxies with Residual Star Formation in Massive Clusters
We present a photometric investigation into recent star formation in galaxy
clusters at z ~ 0.1. We use spectral energy distribution templates to quantify
recent star formation in large X-ray selected clusters from the LARCS survey
using matched GALEX NUV photometry. These clusters all have signs of red
sequence galaxy recent star formation (as indicated by blue NUV-R colour),
regardless of cluster morphology and size. A trend in environment is found for
these galaxies, such that they prefer to occupy low density, high cluster
radius environments. The morphology of these UV bright galaxies suggests that
they are in fact red spirals, which we confirm with light curves and Galaxy Zoo
voting percentages as morphological proxies. These UV bright galaxies are
therefore seen to be either truncated spiral galaxies, caught by ram pressure
in falling into the cluster, or high mass spirals, with the photometry
dominated by the older stellar population.Comment: Accepted for publication in MNRAS, 11 pages, 11 figure
SM(2,4k) fermionic characters and restricted jagged partitions
A derivation of the basis of states for the superconformal minimal
models is presented. It relies on a general hypothesis concerning the role of
the null field of dimension . The basis is expressed solely in terms of
modes and it takes the form of simple exclusion conditions (being thus a
quasi-particle-type basis). Its elements are in correspondence with
-restricted jagged partitions. The generating functions of the latter
provide novel fermionic forms for the characters of the irreducible
representations in both Ramond and Neveu-Schwarz sectors.Comment: 12 page
Diffusion of Lexical Change in Social Media
Computer-mediated communication is driving fundamental changes in the nature
of written language. We investigate these changes by statistical analysis of a
dataset comprising 107 million Twitter messages (authored by 2.7 million unique
user accounts). Using a latent vector autoregressive model to aggregate across
thousands of words, we identify high-level patterns in diffusion of linguistic
change over the United States. Our model is robust to unpredictable changes in
Twitter's sampling rate, and provides a probabilistic characterization of the
relationship of macro-scale linguistic influence to a set of demographic and
geographic predictors. The results of this analysis offer support for prior
arguments that focus on geographical proximity and population size. However,
demographic similarity -- especially with regard to race -- plays an even more
central role, as cities with similar racial demographics are far more likely to
share linguistic influence. Rather than moving towards a single unified
"netspeak" dialect, language evolution in computer-mediated communication
reproduces existing fault lines in spoken American English.Comment: preprint of PLOS-ONE paper from November 2014; PLoS ONE 9(11) e11311
Particles in RSOS paths
We introduce a new representation of the paths of the Forrester-Baxter RSOS
models which represents the states of the irreducible modules of the minimal
models M(p',p). This representation is obtained by transforming the RSOS paths,
for the cases p> 2p'-2, to new paths for which horizontal edges are allowed at
certain heights. These new paths are much simpler in that their weight is
nothing but the sum of the position of the peaks. This description paves the
way for the interpretation of the RSOS paths in terms of fermi-type charged
particles out of which the fermionic characters could be obtained
constructively. The derivation of the fermionic character for p'=2 and p=kp'+/-
1 is outlined. Finally, the particles of the RSOS paths are put in relation
with the kinks and the breathers of the restricted sine-Gordon model.Comment: 15 pages, few typos corrected, version publishe
The Logit Equilibrium: A Perspective on Intuitive Behavioral Anomalies
This paper considers a class of models in which rank-based payoffs are sensitive to small amounts of noise in decision making. Examples include auction, price-competition, coordination, and location games. Observed laboratory behavior in these games is often responsive to asymmetric costs associated with deviations from the Nash equilibrium. These payoff asymmetry effects are incorporated in an approach that introduces noisy behavior via probabilistic choice. In equilibrium, behavior is characterized by a probability distribution that satisfies a "rational expectations" consistency condition: the beliefs that determine player's expected payoffs match the decision distributions that arise from applying a logit probabilistic choice function to those expected payoffs. We prove existence of a unique, symmetric logit (quantal response) equilibrium and derive comparative statics results. The paper provides a unified perspective on many recent laboratory studies of games in which Nash equilibrium predictions are inconsistent with both intuition and experimental evidence.logit equilibrium, quantal response equilibrium, probabilistic choice, auctions.
Reconciling the influence of task-set switching and motor inhibition processes on stop signal after-effects.
Executive response functions can be affected by preceding events, even if they are no longer associated with the current task at hand. For example, studies utilizing the stop signal task have reported slower response times to "GO" stimuli when the preceding trial involved the presentation of a "STOP" signal. However, the neural mechanisms that underlie this behavioral after-effect are unclear. To address this, behavioral and electroencephalography (EEG) measures were examined in 18 young adults (18-30 years) on "GO" trials following a previously "Successful Inhibition" trial (pSI), a previously "Failed Inhibition" trial (pFI), and a previous "GO" trial (pGO). Like previous research, slower response times were observed during both pSI and pFI trials (i.e., "GO" trials that were preceded by a successful and unsuccessful inhibition trial, respectively) compared to pGO trials (i.e., "GO" trials that were preceded by another "GO" trial). Interestingly, response time slowing was greater during pSI trials compared to pFI trials, suggesting executive control is influenced by both task set switching and persisting motor inhibition processes. Follow-up behavioral analyses indicated that these effects resulted from between-trial control adjustments rather than repetition priming effects. Analyses of inter-electrode coherence (IEC) and inter-trial coherence (ITC) indicated that both pSI and pFI trials showed greater phase synchrony during the inter-trial interval compared to pGO trials. Unlike the IEC findings, differential ITC was present within the beta and alpha frequency bands in line with the observed behavior (pSI > pFI > pGO), suggestive of more consistent phase synchrony involving motor inhibition processes during the ITI at a regional level. These findings suggest that between-trial control adjustments involved with task-set switching and motor inhibition processes influence subsequent performance, providing new insights into the dynamic nature of executive control
Stochastic Game Theory: Adjustment to Equilibrium Under Noisy Directional Learning
This paper presents a dynamic model in which agents adjust their decisions in the direction of higher payoffs, subject to random error. This process produces a probability distribution of players' decisions whose evolution over time is determined by the Fokker-Planck equation. The dynamic process is stable for all potential games, a class of payoff structures that includes several widely studied games. In equilibrium, the distributions that determine expected payoffs correspond to the distributions that arise from the logit function applied to those expected payoffs. This "logit equilibrium" forms a stochastic generalization of the Nash equilibrium and provides a possible explanation of anomalous laboratory data.bounded rationality, noisy directional learning, Fokker- Planck equation, potential games, logit equilibrium, stochastic potential.
Scaling properties in the production range of shear dominated flows
Recent developments in turbulence are focused on the effect of large scale
anisotropy on the small scale statistics of velocity increments. According to
Kolmogorov, isotropy is recovered in the large Reynolds number limit as the
scale is reduced and, in the so-called inertial range, universal features
-namely the scaling exponents of structure functions - emerge clearly. However
this picture is violated in a number of cases, typically in the high shear
region of wall bounded flows. The common opinion ascribes this effect to the
contamination of the inertial range by the larger anisotropic scales, i.e. the
residual anisotropy is assumed as a weak perturbation of an otherwise isotropic
dynamics. In this case, given the rotational invariance of the Navier-Stokes
equations, the isotropic component of the structure functions keeps the same
exponents of isotropic turbulence. This kind of reasoning fails when the
anisotropic effects are strong as in the production range of shear dominated
flows. This regime is analyzed here by means of both numerical and experimental
data for a homogeneous shear flow. A well defined scaling behavior is found to
exist, with exponents which differ substantially from those of classical
isotropic turbulence. Contrary to what predicted by the perturbation approach,
such a deep alteration concerns the isotropic sector itself. The general
validity of these results is discussed in the context of turbulence near solid
walls, where more appropriate closure models for the coarse grained
Navier-Stokes equations would be advisable.Comment: 4 pages, 4 figure
- …