99 research outputs found

    Comparison of Agroforests and Protected Forests in the East Usambara Mountains, Tanzania

    Get PDF
    Comparative studies on plant species richness, endemism, floristic composition, and structure between protected and unprotected forests are few in the Eastern Arc Mountains, one of the most biodiverse ecosystems in Africa. This study from one mountain range, the East Usambaras, examines floristic and structural tree data from 41–0.5 ha plots in four types of Eastern Arc forest: active agroforests, recently abandoned agroforests, mature secondary forest, and natural forest. Active agroforests had significantly lower tree species richness, endemic species richness, and stand density compared to natural and mature secondary forest. Recently abandoned agroforests contained a higher tree species richness, density, and tree height than active agroforests. Active and abandoned agroforests were dominated by an invasive tree, Maesopsis eminii. This tree species makes up a large percentage of the stems in active agroforests (26%), recently abandoned agroforests (32%), and in the canopy of mature secondary forests ∼ 30 years post logging (30%). Through time the increasing dominance of this non-native tree in active agroforests is a concern when considering the role of agroforests in a landscape scale conservation strategy

    Utah Farmers Market Network: Diversity, Equity, and Inclusion Community of Practice

    Get PDF
    The Utah Farmers Market Network convened a virtual Diversity, Equity, and Inclusion (DEI) Community of Practice (CoP) to explore how markets could be more welcoming and inclusive to historically excluded populations. Between May and November of 2021, members of seven Utah farmers markets convened at least twice monthly to explore basic DEI concepts and create personalized DEI strategic plans for their markets. This document reviews impacts on participants and the personal, market, community, and organizational goals created

    Welcoming and Inclusive Farmers Markets: A Community of Practice to Encourage Diversity, Equity, and Inclusion

    Get PDF
    Farmers markets, as vibrant hubs for community connection and stimulus to the local economy, often have staff, vendor, and customer demographics that are predominantly white. The Utah Farmers Market Network (UFMN) convened a Diversity, Equity, and Inclusion Community of Practice with market managers statewide to assist markets in becoming more welcoming and inclusive of historically excluded populations

    Creating Positive Lasting Changes With Utah Farmers Markets: USDA Farmers Market Promotion Program Impact Report 2018-2022

    Get PDF
    This report identifies ways that farmers markets and direct marketing farmers can address and connect low-income and ethnic-minority populations to healthy food in Utah. It outlines three objectives and highlights program impacts

    Maternal immune activation as an epidemiological risk factor for neurodevelopmental disorders: Considerations of timing, severity, individual differences, and sex in human and rodent studies

    Get PDF
    Epidemiological evidence suggests that one’s risk of being diagnosed with a neurodevelopmental disorder (NDD)—such as autism, ADHD, or schizophrenia—increases significantly if their mother had a viral or bacterial infection during the first or second trimester of pregnancy. Despite this well-known data, little is known about how developing neural systems are perturbed by events such as early-life immune activation. One theory is that the maternal immune response disrupts neural processes important for typical fetal and postnatal development, which can subsequently result in specific and overlapping behavioral phenotypes in offspring, characteristic of NDDs. As such, rodent models of maternal immune activation (MIA) have been useful in elucidating neural mechanisms that may become dysregulated by MIA. This review will start with an up-to-date and in-depth, critical summary of epidemiological data in humans, examining the association between different types of MIA and NDD outcomes in offspring. Thereafter, we will summarize common rodent models of MIA and discuss their relevance to the human epidemiological data. Finally, we will highlight other factors that may interact with or impact MIA and its associated risk for NDDs, and emphasize the importance for researchers to consider these when designing future human and rodent studies. These points to consider include: the sex of the offspring, the developmental timing of the immune challenge, and other factors that may contribute to individual variability in neural and behavioral responses to MIA, such as genetics, parental age, the gut microbiome, prenatal stress, and placental buffering

    Phylogenetic patterns of extinction risk : the need for critical application of appropriate datasets

    Get PDF
    In order to conduct a replicable analysis of the possible phylogenetic patterns of extinction risk, one must first formulate a clear set of definitions of ecosystem boundaries and risk categories. Subsequently, a robust and internally consistent dataset that includes all the available information on species distributions and risk assessments must be assembled. Here, we review the dataset and methodology of a recent paper focused on phylogenetic patterns of plant extinction risk in the Eastern Arc Mountains of Kenya and Tanzania and point out some of the limitations of inferring such patterns from inadequate and biased data. We show that bias in the dataset is probably responsible for the conclusion that Vulnerable species are more closely related than expected by chance, and provide guidelines for the construction of an appropriate dataset for such an analysis

    Land cover change and carbon emissions over 100 years in an African biodiversity hotspot

    Get PDF
    Agricultural expansion has resulted in both land use and land cover change (LULCC) across the tropics. However, the spatial and temporal patterns of such change and their resulting impacts are poorly understood, particularly for the pre-satellite era. Here we quantify the LULCC history across the 33.9 million ha watershed of Tanzania's Eastern Arc Mountains, using geo-referenced and digitised historical land cover maps (dated 1908, 1923, 1949 and 2000). Our time series from this biodiversity hotspot shows that forest and savanna area both declined, by 74% (2.8 million ha) and 10% (2.9 million ha), respectively, between 1908 and 2000. This vegetation was replaced by a five-fold increase in cropland, from 1.2 million ha to 6.7 million ha. This LULCC implies a committed release of 0.9 Pg C (95% CI: 0.4-1.5) across the watershed for the same period, equivalent to 0.3 Mg C ha(-1) yr(-1) . This is at least three-fold higher than previous estimates from global models for the same study area. We then used the LULCC data from before and after protected area creation, as well as from areas where no protection was established, to analyse the effectiveness of legal protection on land cover change despite the underlying spatial variation in protected areas. We found that, between 1949 and 2000, forest expanded within legally protected areas, resulting in carbon uptake of 4.8 (3.8-5.7) Mg C ha(-1) , compared to a committed loss of 11.9 (7.2-16.6) Mg C ha(-1) within areas lacking such protection. Furthermore, for nine protected areas where LULCC data is available prior to and following establishment, we show that protection reduces deforestation rates by 150% relative to unprotected portions of the watershed. Our results highlight that considerable LULCC occurred prior to the satellite era, thus other data sources are required to better understand long-term land cover trends in the tropics. This article is protected by copyright. All rights reserved

    Estimating cumulative pathway effects on risk for age-related macular degeneration using mixed linear models

    Get PDF
    BACKGROUND: Age-related macular degeneration (AMD) is the leading cause of irreversible visual loss in the elderly in developed countries and typically affects more than 10 % of individuals over age 80. AMD has a large genetic component, with heritability estimated to be between 45 % and 70 %. Numerous variants have been identified and implicate various molecular mechanisms and pathways for AMD pathogenesis but those variants only explain a portion of AMD’s heritability. The goal of our study was to estimate the cumulative genetic contribution of common variants on AMD risk for multiple pathways related to the etiology of AMD, including angiogenesis, antioxidant activity, apoptotic signaling, complement activation, inflammatory response, response to nicotine, oxidative phosphorylation, and the tricarboxylic acid cycle. While these mechanisms have been associated with AMD in literature, the overall extent of the contribution to AMD risk for each is unknown. METHODS: In a case–control dataset with 1,813 individuals genotyped for over 600,000 SNPs we used Genome-wide Complex Trait Analysis (GCTA) to estimate the proportion of AMD risk explained by SNPs in genes associated with each pathway. SNPs within a 50 kb region flanking each gene were also assessed, as well as more distant, putatively regulatory SNPs, based on DNaseI hypersensitivity data from ocular tissue in the ENCODE project. RESULTS: We found that 19 previously associated AMD risk SNPs contributed to 13.3 % of the risk for AMD in our dataset, while the remaining genotyped SNPs contributed to 36.7 % of AMD risk. Adjusting for the 19 risk SNPs, the complement activation and inflammatory response pathways still explained a statistically significant proportion of additional risk for AMD (9.8 % and 17.9 %, respectively), with other pathways showing no significant effects (0.3 % – 4.4 %). DISCUSSION: Our results show that SNPs associated with complement activation and inflammation significantly contribute to AMD risk, separately from the risk explained by the 19 known risk SNPs. We found that SNPs within 50 kb regions flanking genes explained additional risk beyond genic SNPs, suggesting a potential regulatory role, but that more distant SNPs explained less than 0.5 % additional risk for each pathway. CONCLUSIONS: From these analyses we find that the impact of complement SNPs on risk for AMD extends beyond the established genome-wide significant SNPs. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12859-015-0760-4) contains supplementary material, which is available to authorized users

    Uncovering a Massive z~7.65 Galaxy Hosting a Heavily Obscured Radio-Loud QSO Candidate in COSMOS-Web

    Full text link
    In this letter, we report the discovery of the highest redshift, heavily obscured, radio-loud QSO candidate selected using JWST NIRCam/MIRI, mid-IR, sub-mm, and radio imaging in the COSMOS-Web field. Using multi-frequency radio observations and mid-IR photometry, we identify a powerful, radio-loud (RL), growing supermassive black hole (SMBH) with significant spectral steepening of the radio SED (f1.32GHz2f_{1.32 \mathrm{GHz}} \sim 2 mJy, q24μm=1.1q_{24\mu m} = -1.1, α1.323GHz=1.2\alpha_{1.32-3\mathrm{GHz}}=-1.2, Δα=0.4\Delta \alpha = -0.4). In conjunction with ALMA, deep ground-based observations, ancillary space-based data, and the unprecedented resolution and sensitivity of JWST, we find no evidence of QSO contribution to the UV/optical/NIR data and thus infer heavy amounts of obscuration (NH>1023_{\mathrm{H}} > 10^{23} cm2^{-2}). Using the wealth of deep UV to sub-mm photometric data, we report a singular solution photo-z of zphotz_\mathrm{phot} = 7.650.3+0.4^{+0.4}_{-0.3} and estimate an extremely massive host-galaxy (logM=11.92±0.06M\log M_{\star} = 11.92 \pm 0.06\,\mathrm{M}_{\odot}). This source represents the furthest known obscured RL QSO candidate, and its level of obscuration aligns with the most representative but observationally scarce population of QSOs at these epochs.Comment: Submitted to ApJL, Comments welcom
    corecore