5,899 research outputs found

    Strongly coupled plasma with electric and magnetic charges

    Full text link
    A number of theoretical and lattice results lead us to believe that Quark-Gluon Plasma not too far from TcT_c contains not only electrically charged quasiparticles -- quarks and gluons -- but magnetically charged ones -- monopoles and dyons -- as well. Although binary systems like charge-monopole and charge-dyon were considered in details before in both classical and quantum settings, it is the first study of coexisting electric and magnetic particles in many-body context. We perform Molecular Dynamics study of strongly coupled plasmas with 1000\sim 1000 particles and different fraction of magnetic charges. Correlation functions and Kubo formulae lead to such transport properties as diffusion constant, shear viscosity and electric conductivity: we compare the first two with empirical data from RHIC experiments as well as results from AdS/CFT correspondence. We also study a number of collective excitations in these systems.Comment: 2nd version, 22 pages, 32 figures: two important new figures have been included to compare our results with RHIC experiments and AdS/CFT results; a few new references and comments are added as wel

    Long-range sound-mediated dark soliton interactions in trapped atomic condensates

    Full text link
    A long-range soliton interaction is discussed whereby two or more dark solitons interact in an inhomogeneous atomic condensate, modifying their respective dynamics via the exchange of sound waves without ever coming into direct contact. An idealized double well geometry is shown to yield perfect energy transfer and complete periodic identity reversal of the two solitons. Two experimentally relevant geometries are analyzed which should enable the observation of this long-range interaction

    Mobile phone and tablet apps to support young people’s management of their physical long-term conditions: a systematic review protocol

    Get PDF
    Background: The prevalence of long-term or chronic conditions that limit activity and reduce quality of life in young people aged 10-24 years is rising. This group has distinct health care needs and requires tailored support strategies to facilitate increasing personal responsibility for the management of their condition wherever possible, as they mature. Mobile phone and tablet mobile technologies featuring software program apps are already well used by young people for social networking or gaming. They have also been utilized in health care to support personal condition management, using condition-specific and patient-tailored software. Such apps have much potential, and there is an emerging body of literature on their use in a health context making this review timely. Objective: The objective of this paper is to develop a systematic review protocol focused on identifying and assessing the effectiveness of mobile phone and tablet apps that support young people’s management of their chronic conditions. Methods: The search strategy will include a combination of standardized indexed search terms and free-text terms related to the key concepts of young people; long-term conditions and mobile technology. Peer-reviewed journal articles published from 2003 that meet the inclusion and exclusion criteria will be identified through searching the generated hits from 5 bibliographical databases. Two independent reviewers will screen the titles and abstracts to determine which articles focus on testing interventions identified as a mobile phone or tablet apps, and that have been designed and delivered to support the management of long-term conditions in young people aged 10-24 years. Data extraction and quality assessment tools will be used to facilitate consistent analysis and synthesis. It is anticipated that several studies will meet the selection criteria but that these are likely to be heterogeneous in terms of study design, reported outcomes, follow-up times, participants’ age, and health condition. Sub-group analyses will be undertaken and where possible meta-analyses will take place.Results: This review will synthesize available knowledge surrounding tablet and mobile phone apps that support management of long term physical health conditions in young people. The findings will be synthesized to determine which elements of the technologies were most effective for this population. Conclusions: This systematic review aims to synthesize existing literature in order to generate findings that will facilitate the development of an app intervention. The review will form the first phase of development and evaluation of a complex intervention as recommended by the United Kingdom Medical Research Council. The knowledge gained from the review will be verified in subsequent phases, which will include primary qualitative work with health professionals and young people with long term conditions as research participants. Young people living with long-term conditions will be involved as co-researchers and consumer advisors in all subsequent phases to develop and evaluate an app to support the management of long-term physical health conditions

    Aircraft remote sensing of soil moisture and hydrologic parameters, Taylor Creek, Florida, and Little River, Georgia, 1979 data report

    Get PDF
    Experiments were conducted to evaluate aircraft remote sensing techniques for hydrology in a wide range of physiographic and climatic regions using several sensor platforms. The data were collected in late 1978 and during 1979 in two humid areas--Taylor Creek, Fla., and Little River, Ga. Soil moisture measurements and climatic observations are presented as well as the remote sensing data collected using thermal infrared, passive microwave, and active microwave systems

    Assessing a Hydrodynamic Description for Instabilities in Highly Dissipative, Freely Cooling Granular Gases

    Full text link
    An intriguing phenomenon displayed by granular flows and predicted by kinetic-theory-based models is the instability known as particle "clustering," which refers to the tendency of dissipative grains to form transient, loose regions of relatively high concentration. In this work, we assess a modified-Sonine approximation recently proposed [Garz\'o et al., Physica A 376, 94 (2007)] for a granular gas via an examination of system stability. In particular, we determine the critical length scale associated with the onset of two types of instabilities -vortices and clusters- via stability analyses of the Navier-Stokes-order hydrodynamic equations by using the expressions of the transport coefficients obtained from both the standard and the modified-Sonine approximations. We examine the impact of both Sonine approximations over a range of solids fraction \phi <0.2 for small restitution coefficients e=0.25--0.4, where the standard and modified theories exhibit discrepancies. The theoretical predictions for the critical length scales are compared to molecular dynamics (MD) simulations, of which a small percentage were not considered due to inelastic collapse. Results show excellent quantitative agreement between MD and the modified-Sonine theory, while the standard theory loses accuracy for this highly dissipative parameter space. The modified theory also remedies a (highdissipation) qualitative mismatch between the standard theory and MD for the instability that forms more readily. Furthermore, the evolution of cluster size is briefly examined via MD, indicating that domain-size clusters may remain stable or halve in size, depending on system parameters.Comment: 4 figures; to be published in Phys. Rev.

    Polyelectrolyte stars in planar confinement

    Full text link
    We employ monomer-resolved Molecular Dynamics simulations and theoretical considerations to analyze the conformations of multiarm polyelectrolyte stars close to planar, uncharged walls. We identify three mechanisms that contribute to the emergence of a repulsive star-wall force, namely: the confinement of the counterions that are trapped in the star interior, the increase in electrostatic energy due to confinement as well as a novel mechanism arising from the compression of the stiff polyelectrolyte rods approaching the wall. The latter is not present in the case of interaction between two polyelectrolyte stars and is a direct consequence of the impenetrable character of the planar wall.Comment: 34 pages, 8 figures. Revised version of the manuscript. To appear in J. Chem. Phys. May, 200

    Matter-wave bistability in coupled atom-molecule quantum gases

    Full text link
    We study the matter-wave bistability in coupled atom-molecule quantum gases, in which heteronuclear molecules are created via an interspecies Feshbach resonance involving either two-species Bose or two-species Fermi atoms at zero temperature. We show that the resonant two-channel Bose model is equivalent to the nondegenerate parametric down-conversion in quantum optics, while the corresponding Fermi model can be mapped to a quantum optics model that describes a single-mode laser field interacting with an ensemble of inhomogeneously broadened two-level atoms. Using these analogy and the fact that both models are subject to the Kerr nonlinearity due to the two-body s-wave collisions, we show that under proper conditions, the population in the molecular state in both models can be made to change with the Feshbach detuning in a bistable fashion.Comment: 6 pages, 5 figure

    Octahedral Tilt Instability of ReO_3-type Crystals

    Full text link
    The octahedron tilt transitions of ABX_3 perovskite-structure materials lead to an anti-polar (or antiferroelectric) arrangement of dipoles, with the low temperature structure having six sublattices polarized along various crystallographic directions. It is shown that an important mechanism driving the transition is long range dipole-dipole forces acting on both displacive and induced parts of the anion dipole. This acts in concert with short range repulsion, allowing a gain of electrostatic (Madelung) energy, both dipole-dipole and charge-charge, because the unit cell shrinks when the hard ionic spheres of the rigid octahedron tilt out of linear alignment.Comment: 4 page with 3 figures included; new version updates references and clarifies the argument

    Detection of Anisotropies in the Gravitational-Wave Stochastic Background

    Get PDF
    By correlating the signals from a pair of gravitational-wave detectors, one can undertake sensitive searches for a stochastic background of gravitational radiation. If the stochastic background is anisotropic, then this correlated signal varies harmonically with the earth's rotation. We calculate how the harmonics of this varying signal are related to the multipole moments which characterize the anisotropy, and give a formula for the signal-to-noise ratio of a given harmonic. The specific case of the two LIGO (Laser Interferometric Gravitational Observatory) detectors, which will begin operation around the year 2000, is analyzed in detail. We consider two possible examples of anisotropy. If the gravitational-wave stochastic background contains a dipole intensity anisotropy whose origin (like that of the Cosmic Background Radiation) is motion of our local system, then that anisotropy will be observable by the advanced LIGO detector (with 90% confidence in one year of observation) if \Omega_{gw} > 5.3 \times 10^{-8} h_{100}^{-2}. We also study the signal produced by stochastic sources distributed in the same way as the luminous matter in the galactic disk, and in the same way as the galactic halo. The anisotropy due to sources distributed as the galactic disk or as the galactic halo will be observable by the advanced LIGO detector (with 90% confidence in one year of observation) if \Omega_{gw} > 1.8 \times 10^{-10} h_{100}^{-2} or \Omega_{gw} > 6.7 \times 10^{-8} h_{100}^{-2}, respectively.Comment: 25 pages, Latex with RevTeX and epsfig, now includes S/N ratio calculations, expected response from anisotropy due to local motion & sources in galax
    corecore