44,586 research outputs found

    Computer program to determine pressure distributions and forces on blunt bodies of revolution

    Get PDF
    Program was written to include integration of surface pressure in order to obtain axial-force, normal-force, and pitching-moment coefficients. Program was written in CDC FORTRAN for the CDC-6600 computer system

    Description and calibration of the Langley unitary plan wind tunnel

    Get PDF
    The two test sections of the Langley Unitary Plan Wind Tunnel were calibrated over the operating Mach number range from 1.47 to 4.63. The results of the calibration are presented along with a a description of the facility and its operational capability. The calibrations include Mach number and flow angularity distributions in both test sections at selected Mach numbers and tunnel stagnation pressures. Calibration data are also presented on turbulence, test-section boundary layer characteristics, moisture effects, blockage, and stagnation-temperature distributions. The facility is described in detail including dimensions and capacities where appropriate, and example of special test capabilities are presented. The operating parameters are fully defined and the power consumption characteristics are discussed

    Self-assembled ErAs islands in GaAs for optical-heterodyne THz generation

    Get PDF
    We report photomixer devices fabricated on a material consisting of self-assembled ErAs islands in GaAs, which is grown by molecular beam epitaxy. The devices perform comparably and provide an alternative to those made from low-temperature-grown GaAs. The photomixer's frequency response demonstrates that the material is a photoconductor with subpicosecond response time, in agreement with time-resolved differential reflectance measurements. The material also provides the other needed properties such as high photocarrier mobility and high breakdown field, which exceeds 2×10^5 V/cm. The maximum output power before device failure at frequencies of 1 THz was of order 0.1 µW. This material has the potential to allow engineering of key photomixer properties such as the response time and dark resistance

    Strategy for designing broadband epsilon-near-zero metamaterial with loss compensation by gain media

    Full text link
    A strategy is proposed to design the broadband gain-doped epsilon-near-zero (GENZ) metamaterial. Based on the Milton representation of effective permittivity, the strategy starts in a dimensionless spectral space, where the effective permittivity of GENZ metamaterial is simply determined by a pole-zero structure corresponding to the operating frequency range. The physical structure of GENZ metamaterial is retrieved from the pole-zero structure via a tractable inverse problem. The strategy is of great advantage in practical applications and also theoretically reveals the cancellation mechanism dominating the broadband near-zero permittivity phenomenon in the spectral space

    ULAS J234311.93-005034.0: A gravitational lens system selected from UKIDSS and SDSS

    Get PDF
    We report the discovery of a new gravitational lens system. This object, ULAS J234311.93-005034.0, is the first to be selected by using the new UKIRT Infrared Deep Sky Survey (UKIDSS), together with the Sloan Digital Sky Survey (SDSS). The ULAS J234311.93-005034.0 system contains a quasar at redshift 0.788 which is doubly imaged, with separation 1.4". The two quasar images have the same redshift and similar, though not identical, spectra. The lensing galaxy is detected by subtracting point-spread functions from R-band images taken with the Keck telescope. The lensing galaxy can also be detected by subtracting the spectra of the A and B images, since more of the galaxy light is likely to be present in the latter. No redshift is determined from the galaxy, although the shape of its spectrum suggests a redshift of about 0.3. The object's lens status is secure, due to the identification of two objects with the same redshift together with a lensing galaxy. Our imaging suggests that the lens is found in a cluster environment, in which candidate arc-like structures, that require confirmation, are visible in the vicinity. Further discoveries of lenses from the UKIDSS survey are likely as part of this programme, due to the depth of UKIDSS and its generally good seeing conditions.Comment: Accepted by MNRA

    Aircraft and satellite measurement of ocean wave directional spectra using scanning-beam microwave radars

    Get PDF
    A microwave radar technique for remotely measuring the vector wave number spectrum of the ocean surface is described. The technique, which employs short-pulse, noncoherent radars in a conical scan mode near vertical incidence, is shown to be suitable for both aircraft and satellite application, the technique was validated at 10 km aircraft altitude, where we have found excellent agreement between buoy and radar-inferred absolute wave height spectra

    Statistics of trajectories in two-state master equations

    Full text link
    We derive a simple expression for the probability of trajectories of a master equation. The expression is particularly useful when the number of states is small and permits the calculation of observables that can be defined as functionals of whole trajectories. We illustrate the method with a two-state master equation, for which we calculate the distribution of the time spent in one state and the distribution of the number of transitions, each in a given time interval. These two expressions are obtained analytically in terms of modified Bessel functions.Comment: 4 pages, 3 figure

    Finding the way forward for forensic science in the US:a commentary on the PCAST report

    Get PDF
    A recent report by the US President’s Council of Advisors on Science and Technology (PCAST) [1] has made a number of recommendations for the future development of forensic science. Whereas we all agree that there is much need for change, we find that the PCAST report recommendations are founded on serious misunderstandings. We explain the traditional forensic paradigms of match and identification and the more recent foundation of the logical approach to evidence evaluation. This forms the groundwork for exposing many sources of confusion in the PCAST report. We explain how the notion of treating the scientist as a black box and the assignment of evidential weight through error rates is overly restrictive and misconceived. Our own view sees inferential logic, the development of calibrated knowledge and understanding of scientists as the core of the advance of the profession

    Electron tunneling time measured by photoluminescence excitation correlation spectroscopy

    Get PDF
    The tunneling time for electrons to escape from the lowest quasibound state in the quantum wells of GaAs/AlAs/GaAs/AlAs/GaAs double-barrier heterostructures with barriers between 16 and 62 Å has been measured at 80 K using photoluminescence excitation correlation spectroscopy. The decay time for samples with barrier thicknesses from 16 Å (≈12 ps) to 34 Å(≈800 ps) depends exponentially on barrier thickness, in good agreement with calculations of electron tunneling time derived from the energy width of the resonance. Electron and heavy hole carrier densities are observed to decay at the same rate, indicating a coupling between the two decay processes

    Interplay between antiferromagnetic order and spin polarization in ferromagnetic metal/electron-doped cuprate superconductor junctions

    Full text link
    Recently we proposed a theory of point-contact spectroscopy and argued that the splitting of zero-bias conductance peak (ZBCP) in electron-doped cuprate superconductor point-contact spectroscopy is due to the coexistence of antiferromagnetic (AF) and d-wave superconducting orders [Phys. Rev. B {\bf 76}, 220504(R) (2007)]. Here we extend the theory to study the tunneling in the ferromagnetic metal/electron-doped cuprate superconductor (FM/EDSC) junctions. In addition to the AF order, the effects of spin polarization, Fermi-wave vector mismatch (FWM) between the FM and EDSC regions, and effective barrier are investigated. It is shown that there exits midgap surface state (MSS) contribution to the conductance to which Andreev reflections are largely modified due to the interplay between the exchange field of ferromagnetic metal and the AF order in EDSC. Low-energy anomalous conductance enhancement can occur which could further test the existence of AF order in EDSC. Finally, we propose a more accurate formula in determining the spin polarization value in combination with the point-contact conductance data.Comment: 9 pages, 8 figure
    corecore