21,419 research outputs found
Exchange Bias driven by Dzyaloshinskii-Moriya interactions
The exchange bias effect in compensated IrMn3/Co(111) system is studied using
multiscale modeling from "ab initio" to atomistic calculations. We evaluate
numerically the out-of-plane hysteresis loops of the bi-layer for different
thickness of the ferromagnetic layer. The results show the existence of a
perpendicular exchange bias field and an enhancement of the coercivity of the
system. In order to elucidate the possible origin of the exchange bias, we
analyze the hysteresis loops of a selected bi-layer by tuning the different
contributions to the exchange interactions across the interface. Our results
indicate that the exchange bias is primarily induced by the
Dzyaloshinskii-Moriya interactions, while the coercivity is increased mainly
due to a spin-flop mechanism
Dielectric response effects in attosecond time-resolved streaked photoelectron spectra of metal surfaces
The release of conduction-band electrons from a metal surface by a
sub-femtosecond extreme ultraviolet (XUV) pulse, and their propagation through
the solid, provokes a dielectric response in the solid that acts back on the
photoelectron wave packet. We calculated the (wake) potential associated with
this photoelectron self-interaction in terms of bulk and surface plasmon
excitations and show that it induces a considerable, XUV-frequency-dependent
temporal shift in laser-streaked XUV photoemission spectra, suggesting the
observation of the ultrafast solid-state dielectric response in contemporary
streaked photoemission experiments.Comment: 4 pages and 4 figures, submitted to PR
Public goods and decay in networks
We propose a simple behavioral model to analyze situations where (1) a group of agents repeatedly plays a public goods game within a network structure and (2) each agent only observes the past behavior of her neighbors, but is affected by the decisions of the whole group. The model assumes that agents are imperfect conditional cooperators, that they infer unobserved contributions assuming imperfect conditional cooperation by others, and that they have some degree of bounded rationality. We show that our model approximates quite accurately regularities derived from public goods game experiments
Electromagnetic Vacuum of Complex Media: Dipole Emission vs. Light Propagation, Vacuum Energy, and Local Field Factors
We offer a unified approach to several phenomena related to the
electromagnetic vacuum of a complex medium made of point electric dipoles. To
this aim, we apply the linear response theory to the computation of the
polarization field propagator and study the spectrum of vacuum fluctuations.
The physical distinction among the local density of states which enter the
spectra of light propagation, total dipole emission, coherent emission, total
vacuum energy and Schwinger-bulk energy is made clear. Analytical expressions
for the spectrum of dipole emission and for the vacuum energy are derived.
Their respective relations with the spectrum of external light and with the
Schwinger-bulk energy are found. The light spectrum and the Schwinger-bulk
energy are determined by the Dyson propagator. The emission spectrum and the
total vacuum energy are determined by the polarization propagator. An exact
relationship of proportionality between both propagators is found in terms of
local field factors. A study of the nature of stimulated emission from a single
dipole is carried out. Regarding coherent emission, it contains two components.
A direct one which is transferred radiatively and directly from the emitter
into the medium and whose spectrum is that of external light. And an indirect
one which is radiated by induced dipoles. The induction is mediated by one (and
only one) local field factor. Regarding the vacuum energy, we find that in
addition to the Schwinger-bulk energy the vacuum energy of an effective medium
contains local field contributions proportional to the resonant frequency and
to the spectral line-width.Comment: Typos fixed, journal ref. adde
The interpretive approach to religious education : challenging Thompson's interpretation
In a recent book chapter, Matthew Thompson makes some criticisms of my work, including the interpretive approach to religious education and the research and activity of Warwick Religions and Education Research Unit. Against the background of a discussion of religious education in the public sphere, my response challenges Thompson’s account, commenting on his own position in relation to dialogical approaches to religious education. The article rehearses my long held view that the ideal form of religious education in fully state funded schools of a liberal democracy should be ‘secular’ but not ‘secularist’; there should be no implication of an axiomatic secular humanist interpretation of religions
Atomistic spin-model based on a new spin-cluster expansion technique: Application to the IrMn3/Co interface
In order to derive tensorial exchange interactions and local magnetic
anisotropies in itinerant magnetic systems, an approach combining the
Spin-Cluster Expansion with the Relativistic Disordered Local Moment scheme is
introduced. The theoretical background and computational aspects of the method
are described in detail. The exchange interactions and site resolved anisotropy
contributions for the IrMn3/Co(111) interface, a prototype for an exchange bias
system, are calculated including a large number of magnetic sites from both the
antiferromagnet and ferromagnet. Our calculations reveal that the coupling
between the two subsystems is fairly limited to the vicinity of the interface.
The magnetic anisotropy of the interface system is discussed, including effects
of the Dzyaloshinskii-Moriya interactions that appear due to symmetry breaking
at the interface.Comment: 10 pages, 6 figure
Disordered graphene and boron nitride in a microwave tight-binding analog
Experiments on hexagonal graphene-like structures using microwave measuring
techniques are presented. The lowest transverse-electric resonance of coupled
dielectric disks sandwiched between two metallic plates establishes a
tight-binding configuration. The nearest-neighbor coupling approximation is
investigated in systems with few disks. Taking advantage of the high
flexibility of the disks positions, consequences of the disorder introduced in
the graphene lattice on the Dirac points are investigated. Using two different
types of disks, a boron-nitride-like structure (a hexagonal lattice with a
two-atom basis) is implemented, showing the appearance of a band gap.Comment: 12 pages, 14 figure
Hall state quantization in a rotating frame
We derive electromagnetomotive force fields for charged particles moving in a
rotating Hall sample, satisfying a twofold U(1) gauge invariance principle. It
is then argued that the phase coherence property of quantization of the line
integral of total collective particle momentum into multiples of Planck's
quantum of action is solely responsible for quantization in the Hall state. As
a consequence, the height of the Hall quantization steps should remain
invariant in a rapidly rotating Hall probe. Quantum Hall particle
conductivities do not depend on charge and mass of the electron, and are
quantized in units of the inverse of Planck's action quantum.Comment: 6 pages, accepted for publication in Europhysics Letter
Entangled states of trapped ions allow measuring the magnetic field gradient of a single atomic spin
Using trapped ions in an entangled state we propose detecting a magnetic
dipole of a single atom at distance of a few m. This requires a
measurement of the magnetic field gradient at a level of about 10
Tesla/m. We discuss applications e.g. in determining a wide variation of
ionic magnetic moments, for investigating the magnetic substructure of ions
with a level structure not accessible for optical cooling and detection,and for
studying exotic or rare ions, and molecular ions. The scheme may also be used
for measureing spin imbalances of neutral atoms or atomic ensembles trapped by
optical dipole forces. As the proposed method relies on techniques well
established in ion trap quantum information processing it is within reach of
current technology.Comment: 4 pages, 2 fi
- …