46,738 research outputs found
Stability of a non-orthogonal stagnation flow to three dimensional disturbances
A similarity solution for a low Mach number nonorthogonal flow impinging on a hot or cold plate is presented. For the constant density case, it is known that the stagnation point shifts in the direction of the incoming flow and that this shift increases as the angle of attack decreases. When the effects of density variations are included, a critical plate temperature exists; above this temperature the stagnation point shifts away from the incoming stream as the angle is decreased. This flow field is believed to have application to the reattachment zone of certain separated flows or to a lifting body at a high angle of attack. Finally, the stability of this nonorthogonal flow to self similar, 3-D disturbances is examined. Stability properties of the flow are given as a function of the parameters of this study; ratio of the plate temperature to that of the outer potential flow and angle of attack. In particular, it is shown that the angle of attack can be scaled out by a suitable definition of an equivalent wavenumber and temporal growth rate, and the stability problem for the nonorthogonal case is identical to the stability problem for the orthogonal case
Cerenkov's Effect and Neutrino Oscillations in Loop Quantum Gravity
Bounds on the scale parameter {\cal L} arising in loop quantum gravity theory
are derived in the framework of Cerenkov's effect and neutrino oscillations.
Assuming that {\cal L} is an universal constant, we infer {\cal L}>
10^{-18}eV^{-1}, a bound compatible with ones inferred in different physical
context.Comment: 6 pages, no figures, in print on MPL
Holographic Geometry and Noise in Matrix Theory
Using Matrix Theory as a concrete example of a fundamental holographic
theory, we show that the emergent macroscopic spacetime displays a new
macroscopic quantum structure, holographic geometry, and a new observable
phenomenon, holographic noise, with phenomenology similar to that previously
derived on the basis of a quasi-monochromatic wave theory. Traces of matrix
operators on a light sheet with a compact dimension of size are interpreted
as transverse position operators for macroscopic bodies. An effective quantum
wave equation for spacetime is derived from the Matrix Hamiltonian. Its
solutions display eigenmodes that connect longitudinal separation and
transverse position operators on macroscopic scales. Measurements of transverse
relative positions of macroscopically separated bodies, such as signals in
Michelson interferometers, are shown to display holographic nonlocality,
indeterminacy and noise, whose properties can be predicted with no parameters
except . Similar results are derived using a detailed scattering calculation
of the matrix wavefunction. Current experimental technology will allow a
definitive and precise test or validation of this interpretation of holographic
fundamental theories. In the latter case, they will yield a direct measurement
of independent of the gravitational definition of the Planck length, and a
direct measurement of the total number of degrees of freedom.Comment: 19 pages, 2 figures; v2: factors of Planck mass written explicitly,
typos correcte
Finding the Pion in the Chiral Random Matrix Vacuum
The existence of a Goldstone boson is demonstrated in chiral random matrix
theory. After determining the effective coupling and calculating the scalar and
pseudoscalar propagators, a random phase approximation summation reveals the
massless pion and massive sigma modes expected whenever chiral symmetry is
spontaneously broken.Comment: 3 pages, 1 figure, revte
SAFT-γ force field for the simulation of molecular fluids: 4. A single-site coarse-grained model of water applicable over a wide temperature range
In this work, we develop coarse-grained (CG) force fields for water, where the effective CG intermolecular interactions between particles are estimated from an accurate description of the macroscopic experimental vapour-liquid equilibria data by means of a molecular-based equation of state. The statistical associating fluid theory for Mie (generalised Lennard-Jones) potentials of variable range (SAFT-VR Mie) is used to parameterise spherically symmetrical (isotropic) force fields for water. The resulting SAFT-γ CG models are based on the Mie (8-6) form with size and energy parameters that are temperature dependent; the latter dependence is a consequence of the angle averaging of the directional polar interactions present in water. At the simplest level of CG where a water molecule is represented as a single bead, it is well known that an isotropic potential cannot be used to accurately reproduce all of the thermodynamic properties of water simultaneously. In order to address this deficiency, we propose two CG potential models of water based on a faithful description of different target properties over a wide range of temperatures: our CGW1-vle model is parameterised to match the saturated-liquid density and vapour pressure; our other CGW1-ift model is parameterised to match the saturated-liquid density and vapour-liquid interfacial tension. A higher level of CG corresponding to two water molecules per CG bead is also considered: the corresponding CGW2-bio model is developed to reproduce the saturated-liquid density and vapour-liquid interfacial tension in the physiological temperature range, and is particularly suitable for the large-scale simulation of bio-molecular systems. A critical comparison of the phase equilibrium and transport properties of the proposed force fields is made with the more traditional atomistic models
Role of acoustics in flame/vortex interactions
The role of acoustics in flame/vortex interactions is examined via asymptotic analysis and numerical simulation. The model consists of a one-step, irreversible Arrhenius reaction between initially unmixed species occupying adjacent half-planes which are allowed to mix and react by convection and diffusion in the presence of an acoustic field or a time-varying pressure field of small amplitude. The main emphasis is on the influence of the acoustics on the ignition time and flame structure as a function of vortex Reynolds number and initial temperature differences of the reactants
Ignition and structure of a laminar diffusion flame in the field of a vortex
The distortion of flames in flows with vortical motion is examined via asymptotic analysis and numerical simulation. The model consists of a constant density, one step, irreversible Arrhenius reaction between initially unmixed species occupying adjacent half-planes which are then allowed to mix and react in the presence of a vortex. The evolution in time of the temperature and mass fraction fields is followed. Emphasis is placed on the ignition time and location as a function of vortex Reynolds number and initial temperature differences of the reacting species. The study brings out the influence of the vortex on the chemical reaction. In all phases, good agreement is observed between asymptotic analysis and the full numerical solution of the model equations
Innovations in immersive technology and artificial intelligence to enhance the golden skillsets of effective communication and collaboration
This longitudinal appraisal provides empirical evidence that higher education needs to concentrate even more on developing graduates with strengths in communications and collaborations, alongside the focus on subject capability. Immersive technology and artificial intelligence provide innovative means of catalysing such growth, examples including the emergence of soft-skills development through platforms such as Bodyswaps (2024) and others.
Using primary baseline data from ten years ago, a Journal of Education and Work paper (O’Leary, 2017) confirmed a series of disciplinary variations in employability-related support across higher education institutions. A complementary Studies in Higher Education publication (O’Leary, 2021) highlighted that gendered inconsistencies in such provision were of an indirect nature, as they reflected variable provision across disciplinary subject areas while persistent gendered choices of degree subject matter exist. The third study (O’Leary et.al., 2024) assesses progress and establishes future priorities for course developments.
The first study outlined that variations exist in how students and graduates prefer to see employabilityrelated support delivered in their courses. Nine in ten want it included, but differences exist as to whether it is best provided as an optional feature (the desire within Humanities and Sciences), or it is fully integrated into the course (the preference in Engineering and Social Sciences). However, the second study highlighted that actual student and graduate experiences of employability-related support vary and, as a result, more female students and graduates appear to miss out because of the variations across disciplinary areas and the fact that females are predominant in those subject fields where the visibility of employability-related support is relatively lower.
To complement the earlier studies and establish a longitudinal perspective over the last decade, the third study (O’Leary et.al., 2024) was recently completed by over one hundred students and graduates.
A preliminary assessment of the data has been made for this proposal, and the full analysis continues to progress. The initial appraisal indicates that the gaps previously exposed are closing and the focus for future course developments should be on developing graduates with strengths in communication and collaboration, as well as on capability. Opportunities to enhance such golden skills exist using immersive technologie
Assessment of the effectiveness of head only and back-of-the-head electrical stunning of chickens
The study assesses the effectiveness of reversible head-only and back-of-the-head electrical stunning of chickens using 130–950 mA per bird at 50 Hz AC
- …