59,225 research outputs found

    Design method for adsorption beds

    Get PDF
    Regenerable adsorption beds for long-term life support systems include synthetic geolite to remove carbon dioxide and silica gel to dehumidify the atmospheric gas prior to its passage through the geolite beds. Bed performance is evaluated from adsorption characteristics, heat and mass transfer, and pressure drop

    Prediction of gas leakage of environmental control systems

    Get PDF
    Mathematical models of leakage configurations and various flow theories are presented with the substantive experimental test data to provide background material for future design and failure analysis. Normal-rate leakage and emergency, high-rate leakage are considered

    Dispersion and transitions of dipolar plasmon modes in graded plasmonic waveguides

    Full text link
    Coupled plasmon modes are studied in graded plasmonic waveguides, which are periodic chains of metallic nanoparticles embedded in a host with gradually varying refractive indices. We identify three types of localized modes called "light", "heavy", and "light-heavy" plasmonic gradons outside the passband, according to various degrees of localization. We also demonstrate new transitions among extended and localized modes when the interparticle separation dd is smaller than a critical dcd_c, whereas the three types of localized modes occur for d>dcd>d_c, with no extended modes. The transitions can be explained with phase diagrams constructed for the lossless metallic systems.Comment: Preliminary results have been presented at ETOPIM 7. Submitted to Appl. Phys. Let

    Very low sound velocities in iron-rich (Mg,Fe)O: Implications for the core-mantle boundary region

    Get PDF
    The sound velocities of (Mg_(.16)Fe_(.84))O have been measured to 121 GPa at ambient temperature using nuclear resonant inelastic x-ray scattering. The effect of electronic environment of the iron sites on the sound velocities were tracked in situ using synchrotron Mössbauer spectroscopy. We found the sound velocities of (Mg_(.16)Fe_(.84))O to be much lower than those in other presumed mantle phases at similar conditions, most notably at very high pressures. Conservative estimates of the effect of temperature and dilution on aggregate sound velocities show that only a small amount of iron-rich (Mg,Fe)O can greatly reduce the average sound velocity of an assemblage. We propose that iron-rich (Mg,Fe)O be a source of ultra-low velocity zones. Other properties of this phase, such as enhanced density and dynamic stability, strongly support the presence of iron-rich (Mg,Fe)O in localized patches above the core-mantle boundary

    A research program to reduce the interior noise in general aviation aircraft, index and summary

    Get PDF
    This report is an index of the published works from NASA Grant NSG 1301, entitled A Research Program to Reduce the Interior Noise in General Aviation Aircraft. Included are a list of all published reports and papers, a compilation of test specimen characteristics, and summaries of each published work

    A Gate-Induced Switch in Zigzag Graphene Naoribbons and Charging Effects

    Full text link
    Using non-equilibrium Green's function formalism, we investigate nonlinear transport and charging effects of gated graphene nanoribbons (GNRs) with even number of zigzag chains. We find a negative differential resistance (NDR) over a wide range of gate voltages with on/off ratio ∌106\sim 10^6 for narrow enough ribbons. This NDR originates from the parity selection rule and also prohibition of transport between discontinues energy bands. Since the external field is well screened close to the contacts, the NDR is robust against the electrostatic potential. However, for voltages higher than the NDR threshold, due to charge transfer through the edges of ZGNR, screening is reduced such that the external potential can penetrate inside the ribbon giving rise to smaller values of off current. Furthermore, on/off ratio of the current depends on the aspect ratio of the length/width and also edge impurity. Moreover, on/off ratio displays a power law behavior as a function of ribbon length.Comment: 8 pages, 9 figure

    A model for the Z-track phenomenon in GX 5-1 and observational evidence for the physical origins of the kHz QPO

    Get PDF
    We present results of a combined investigation of the spectral and kHz QPO evolution around the Z-track in GX 5-1 based on high-quality RXTE data. The Extended ADC emission model provides very good fits to the spectra, the results pointing clearly to a model for the nature of the Z-track, in agreement with previous results for the similar source GX 340+0. In this model, at the soft apex of the Z-track, the mass accretion rate Mdot is minimum and the neutron star has its lowest temperature; but as the source moves along the normal branch, the luminosity of the Comptonized emission increases, indicating that Mdot increases and the neutron star gets hotter. The measured flux f of the neutron star emission increases by a factor of ten becoming super-Eddington, and we propose that this disrupts the inner disk so forming jets. In flaring, the luminosity of the dominant Comptonized emission from the ADC is constant, while the neutron star emission increases, and we propose for the first time that flaring consists of unstable nuclear burning on the neutron star, and the measured mass accretion rate per unit area mdot at the onset of flaring agrees well with the theoretical critical value at which burning becomes unstable. There is a striking correlation between the frequencies of the kHz QPO and the ratio of the flux to the Eddington value: f/f_Edd, suggesting an explanation of the higher frequency QPO and of its variation along the Z-track. It is well known that a Keplerian orbit in the disk at this frequency corresponds to a position some distance from the neutron star; we propose that the oscillation always occurs at the inner disk edge, which moves radially outwards on the upper normal and horizontal branches as the measured increasing radiation pressure increasingly disrupts the inner disk.Comment: Astronomy and Astrophysics, in pres

    Theoretical study of ionization of an alkali atom adsorbed on a metal surface by laser assisted subfemtosecond pulse

    Get PDF
    The first numerical simulation of the process of ionization of an atom adsorbed on a metal surface by the subfemtosecond pulse is presented. The streaking scheme is considered, when a weak sub-femtosecond pulse comes together with a strong IR pulse with a variable delay between them. The problem is analyzed with numerical solving the non-stationary Schroedinger equation in the cylindrical coordinate. The results obtained are compared with ones in the gas phase. We show that the surface influences the DDCS, but the observation of this influence, beside the trivial polarization shift of the energy of the initial state, requires a quite high experimental resolution

    Legacy data and cosmological constraints from the angular-size/redshift relation for ultra-compact radio sources

    Get PDF
    We have re-examined an ancient VLBI survey of ultra-comact radio sources at 2.29 GHz, which gave fringe amplitudes for 917 such objects with total flux density >0.5 Jy approximately. A number of cosmological investigations based upon this survey have been published in recent years. We have updated the sample with respect to both redshift and radio information, and now have full data for 613 objects, significantly larger than the number (337) used in earlier investigations. The corresponding angular-size/redshift diagram gives Omega_m=0.25+0.04/-0.03, Omega_\Lambda=0.97+0.09/-0.13 and K=0.22+0.07/-0.10. In combination with supernova data, and a simple-minded approach to CMB data based upon the angular size of the acoustic horizon, our best figures are Omega_m=0.298+0.025/-0.024, Omega_\Lambda=0.702+0.035/-0.036 and K= 0.000+0.021/-0.019. We have examined simple models of dynamical vacuum energy; the first, based upon a scalar potential V(phi)=omega_C^2 phi^2/2, gives w(0)=-1.00+0.06/-0.00, (dw/dz)_0=+0.00/-0.08; in this case conditions at z=0 require particular attention, to preclude behaviour in which phi becomes singular as z -->infinity. For fixed w limits are w=-1.20+0.15/-0.14. The above error bars are 68% confidence limits.Comment: 24 pages, 9 figure
    • 

    corecore