59,225 research outputs found
Design method for adsorption beds
Regenerable adsorption beds for long-term life support systems include synthetic geolite to remove carbon dioxide and silica gel to dehumidify the atmospheric gas prior to its passage through the geolite beds. Bed performance is evaluated from adsorption characteristics, heat and mass transfer, and pressure drop
Prediction of gas leakage of environmental control systems
Mathematical models of leakage configurations and various flow theories are presented with the substantive experimental test data to provide background material for future design and failure analysis. Normal-rate leakage and emergency, high-rate leakage are considered
Dispersion and transitions of dipolar plasmon modes in graded plasmonic waveguides
Coupled plasmon modes are studied in graded plasmonic waveguides, which are
periodic chains of metallic nanoparticles embedded in a host with gradually
varying refractive indices. We identify three types of localized modes called
"light", "heavy", and "light-heavy" plasmonic gradons outside the passband,
according to various degrees of localization. We also demonstrate new
transitions among extended and localized modes when the interparticle
separation is smaller than a critical , whereas the three types of
localized modes occur for , with no extended modes. The transitions can
be explained with phase diagrams constructed for the lossless metallic systems.Comment: Preliminary results have been presented at ETOPIM 7. Submitted to
Appl. Phys. Let
Very low sound velocities in iron-rich (Mg,Fe)O: Implications for the core-mantle boundary region
The sound velocities of (Mg_(.16)Fe_(.84))O have been measured to 121 GPa at ambient temperature using nuclear resonant inelastic x-ray scattering. The effect of electronic environment of the iron sites on the sound velocities were tracked in situ using synchrotron Mössbauer spectroscopy. We found the sound velocities of (Mg_(.16)Fe_(.84))O to be much lower than those in other presumed mantle phases at similar conditions, most notably at very high pressures. Conservative estimates of the effect of temperature and dilution on aggregate sound velocities show that only a small amount of iron-rich (Mg,Fe)O can greatly reduce the average sound velocity of an assemblage. We propose that iron-rich (Mg,Fe)O be a source of ultra-low velocity zones. Other properties of this phase, such as enhanced density and dynamic stability, strongly support the presence of iron-rich (Mg,Fe)O in localized patches above the core-mantle boundary
A research program to reduce the interior noise in general aviation aircraft, index and summary
This report is an index of the published works from NASA Grant NSG 1301, entitled A Research Program to Reduce the Interior Noise in General Aviation Aircraft. Included are a list of all published reports and papers, a compilation of test specimen characteristics, and summaries of each published work
A Gate-Induced Switch in Zigzag Graphene Naoribbons and Charging Effects
Using non-equilibrium Green's function formalism, we investigate nonlinear
transport and charging effects of gated graphene nanoribbons (GNRs) with even
number of zigzag chains. We find a negative differential resistance (NDR) over
a wide range of gate voltages with on/off ratio for narrow enough
ribbons. This NDR originates from the parity selection rule and also
prohibition of transport between discontinues energy bands. Since the external
field is well screened close to the contacts, the NDR is robust against the
electrostatic potential. However, for voltages higher than the NDR threshold,
due to charge transfer through the edges of ZGNR, screening is reduced such
that the external potential can penetrate inside the ribbon giving rise to
smaller values of off current. Furthermore, on/off ratio of the current depends
on the aspect ratio of the length/width and also edge impurity. Moreover,
on/off ratio displays a power law behavior as a function of ribbon length.Comment: 8 pages, 9 figure
A model for the Z-track phenomenon in GX 5-1 and observational evidence for the physical origins of the kHz QPO
We present results of a combined investigation of the spectral and kHz QPO
evolution around the Z-track in GX 5-1 based on high-quality RXTE data. The
Extended ADC emission model provides very good fits to the spectra, the results
pointing clearly to a model for the nature of the Z-track, in agreement with
previous results for the similar source GX 340+0. In this model, at the soft
apex of the Z-track, the mass accretion rate Mdot is minimum and the neutron
star has its lowest temperature; but as the source moves along the normal
branch, the luminosity of the Comptonized emission increases, indicating that
Mdot increases and the neutron star gets hotter. The measured flux f of the
neutron star emission increases by a factor of ten becoming super-Eddington,
and we propose that this disrupts the inner disk so forming jets. In flaring,
the luminosity of the dominant Comptonized emission from the ADC is constant,
while the neutron star emission increases, and we propose for the first time
that flaring consists of unstable nuclear burning on the neutron star, and the
measured mass accretion rate per unit area mdot at the onset of flaring agrees
well with the theoretical critical value at which burning becomes unstable.
There is a striking correlation between the frequencies of the kHz QPO and the
ratio of the flux to the Eddington value: f/f_Edd, suggesting an explanation of
the higher frequency QPO and of its variation along the Z-track. It is well
known that a Keplerian orbit in the disk at this frequency corresponds to a
position some distance from the neutron star; we propose that the oscillation
always occurs at the inner disk edge, which moves radially outwards on the
upper normal and horizontal branches as the measured increasing radiation
pressure increasingly disrupts the inner disk.Comment: Astronomy and Astrophysics, in pres
Theoretical study of ionization of an alkali atom adsorbed on a metal surface by laser assisted subfemtosecond pulse
The first numerical simulation of the process of ionization of an atom
adsorbed on a metal surface by the subfemtosecond pulse is presented. The
streaking scheme is considered, when a weak sub-femtosecond pulse comes
together with a strong IR pulse with a variable delay between them. The problem
is analyzed with numerical solving the non-stationary Schroedinger equation in
the cylindrical coordinate. The results obtained are compared with ones in the
gas phase. We show that the surface influences the DDCS, but the observation of
this influence, beside the trivial polarization shift of the energy of the
initial state, requires a quite high experimental resolution
Legacy data and cosmological constraints from the angular-size/redshift relation for ultra-compact radio sources
We have re-examined an ancient VLBI survey of ultra-comact radio sources at
2.29 GHz, which gave fringe amplitudes for 917 such objects with total flux
density >0.5 Jy approximately. A number of cosmological investigations based
upon this survey have been published in recent years. We have updated the
sample with respect to both redshift and radio information, and now have full
data for 613 objects, significantly larger than the number (337) used in
earlier investigations. The corresponding angular-size/redshift diagram gives
Omega_m=0.25+0.04/-0.03, Omega_\Lambda=0.97+0.09/-0.13 and K=0.22+0.07/-0.10.
In combination with supernova data, and a simple-minded approach to CMB data
based upon the angular size of the acoustic horizon, our best figures are
Omega_m=0.298+0.025/-0.024, Omega_\Lambda=0.702+0.035/-0.036 and K=
0.000+0.021/-0.019. We have examined simple models of dynamical vacuum energy;
the first, based upon a scalar potential V(phi)=omega_C^2 phi^2/2, gives
w(0)=-1.00+0.06/-0.00, (dw/dz)_0=+0.00/-0.08; in this case conditions at z=0
require particular attention, to preclude behaviour in which phi becomes
singular as z -->infinity. For fixed w limits are w=-1.20+0.15/-0.14. The above
error bars are 68% confidence limits.Comment: 24 pages, 9 figure
- âŠ