858 research outputs found

    Solving the Mystery of the "Cyanide Bomb"

    Get PDF
    A man who\u27s career began as a biochemist and ended as a botanist. A man who under the instruction of a Professor Butt realized what he wanted to do for the rest of his life. This was the story of Professor Jonathan Poulton, Emeritus Faculty at the University of Iowa. He comes from an English family with a religious background and ended up in the sciences when he decided to pursue biochemistry over a dinner with a family friend. He earned his PhD at Oxford University and traveled abroad to conduct research. Poulton eventually landed himself at the University of Iowa on a frigid day but this wasn\u27t enough to deter him! Poulton became a professor of botany and conducted research on how plants stored and released cyanide from their leaves. Later in his career, his research focused on uncovering some of the genes in the Arabidopsis thaliana genome (a small flowering plant). His career was also comprised of several teaching experiences such as but not limited to Principles of Biology and Botany. If you would like to learn more about his outstanding career and unlikely story, read Professor Jonathan Poulton\u27s profile story

    When is policing fair? Groups, identity and judgements of the procedural justice of coercive crowd policing

    Get PDF
    Procedural justice theory (PJT) is now a widely utilised theoretical perspective in policing research that acknowledges the centrality of police ‘fairness’. Despite its widespread acceptance this paper asserts that there are conceptual limitations that emerge when applying the theory to the policing of crowd events. This paper contends that this problem with PJT is a result of specific assumptions that are highlighted by two studies using a novel experimental approach. Study 1 systematically manipulated the social categories used to describe crowd participants subjected to police coercion. The experiment demonstrates how these social categories dramatically affected participants’ perceptions of the same police action and that it was participants’ relational identification with the police, rather than a superordinate category, that mediated the association between judgements of procedural fairness and intentions to cooperate. In Study 2, using a quasi-experimental design, we then replicated and extended these findings by demonstrating how perceptions of procedural fairness are also influenced by levels of in-group identification. The paper concludes by exploring the implications of the data for reconceptualising the social psychological processes mediating these judgements and impacts of police legitimacy

    Identifying species and ecosystem sensitivities.

    Get PDF
    Executive Summary The programme of work was commissioned in September 1998 to supply information to underpin the UK’s commitments to protection and conservation of the ecosystems and biodiversity of the marine environment under the 1992 OSPAR Convention on the Protection of the Marine Environment of the North East Atlantic. The programme also provided support for the implementation of the Biodiversity Convention and the EU Habitats Directive. The MarLIN programme initiated a new approach to assessing sensitivity and recoverability characteristics of seabed species and biotopes based on structures (such as the seabed biotopes classification) and criteria (such as for assessing rarity and defining ‘sensitivity’) developed since 1997. It also developed tools to disseminate the information on the Internet. The species researched were those that were listed in conventions and directives, included in Biodiversity Action Plans, or were nationally rare or scarce. In addition, species were researched if they maintained community composition or structure and/or provided a distinctive habitat or were special to or especially abundant in a particular situation or biotope At its conclusion in August 2001, the work carried out under the contract with DETR/DEFRA had: · Developed protocols, criteria and structures for identifying ‘sensitivity’ and ‘recoverability’, which were tested by a programme management group. · Developed a database to hold research data on biology and sensitivity of species and biotopes. · Defined the link between human activities and the environmental factors likely to be affected by those activities. · Developed a user-friendly Web site to access information from the database, on the sensitivity and recoverability characteristics of over 100 species and basic information on over 200 species. Additionally, the project team have: · Brought together and facilitated discussion between current developers and users of electronic resources for environmental management, protection and education in the conference ‘Using Marine Biological Information in the Electronic Age’ (19-21 July 1999). · Contributed to the development of Ecological Quality Objectives for the North Sea (Scheveningen, 11- 3 September 1999 and subsequent papers). · Provided detailed information on species as a supplement to the National Biodiversity Network Gateway demonstration www.searchnbn.net. · Developed a peer-reviewed approach to electronic publication of updateable information. · Promoted the contract results and the MarLIN approach to the support of marine environmental management and protection at European research fora and, through the web site, internationally. The information available through the Web site is now being used by consultants and Government agencies. The DEFRA contract has been of critical importance in establishing the Marine Life Information Network (MarLIN) programme and has encouraged support from other organisations. Other related work in the MarLIN programme is on-going, especially to identify sensitivity of biotopes to support management of SACs (contract from English Nature in collaboration with Scottish Natural Heritage), to access data sources (in collaboration with the National Biodiversity Network) and to establish volunteer recording schemes for marine life. The results of the programme are best viewed on the Web site (www.marlin.ac.uk). Three reports have been produced during the project. A final report detailing the work undertaken, a brochure ‘Identifying the sensitivity of seabed ecosystems’ and a CD-ROM describing the programme and demonstrating the Web site have been delivered as final products in addition to the Web site

    Bioavailability and kidney responses to Diclofenac in the fathead minnow (Pimephales promelas)

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Diclofenac is one of the most widely prescribed nonsteroidal anti-inflammatory drugs worldwide. It is frequently detected in surface waters; however, whether this pharmaceutical poses a risk to aquatic organisms is debated. Here we quantified the uptake of diclofenac by the fathead minnow (Pimephales promelas) following aqueous exposure (0.2-25.0 μg L(-1)) for 21 days, and evaluated the tissue and biomolecular responses in the kidney. Diclofenac accumulated in a concentration- and time-dependent manner in the plasma of exposed fish. The highest plasma concentration observed (for fish exposed to 25 μg L(-1) diclofenac) was within the therapeutic range for humans. There was a strong positive correlation between exposure concentration and the number of developing nephrons observed in the posterior kidney. Diclofenac was not found to modulate the expression of genes in the kidney associated with its primary mode of action in mammals (prostaglandin-endoperoxide synthases) but modulated genes associated with kidney repair and regeneration. There were no significant adverse effects following 21 days exposure to concentrations typical of surface waters. The combination of diclofenac's uptake potential, effects on kidney nephrons and relatively small safety margin for some surface waters may warrant a longer term chronic health effects analysis for diclofenac in fish.This work was funded by Knowledge Transfer Partnership (KTP): Use of ‘omic’ technologies in the environmental risk assessment of pharmaceuticals (KTP007650) and AstraZeneca’s Safety, Health and Environment (SHE) Research Programme. We thank Lina Gunnarsson, Matt Winter and James Cresswell (Exeter University), and former members of the Brixham Environmental Laboratory for their advice and assistance. Authors declare no competing financial interest
    • …
    corecore