1,099 research outputs found

    Real-time Spectroscopy with Sub-GHz Resolution using Amplified Dispersive Fourier Transformation

    Full text link
    Dispersive Fourier transformation is a powerful technique in which spectral information is mapped into the time domain using chromatic dispersion. It replaces a spectrometer with an electronic digitizer, and enables real-time spectroscopy. The fundamental problem in this technique is the trade-off between the detection sensitivity and spectral resolution, a limitation set by the digitizer's bandwidth. This predicament is caused by the power loss associated with optical dispersion. We overcome this limitation using Raman amplified spectrum-to-time transformation. An extraordinary loss-less -11.76 ns/nm dispersive device is used to demonstrate single-shot gas absorption spectroscopy with 950 MHz resolution--a record in real-time spectroscopy.Comment: The following article has been accepted by Applied Physics Letter

    Spinning Slow and Fast: Stellar Atmosphere Models for β Ursae Majoris and α Leonis.

    Get PDF
    Angular diameter measurements by the Very Energetic Radiation Imaging Telescope Array System (VERITAS) Stellar Intensity Interferometer (SII) in a waveband near 400 nm complement existing angular diameter measurements in the near-infrared. VSII observations will test fundamental predictions of stellar atmosphere models and should be more sensitive to limb darkening and gravity darkening effects than measurements in the near-IR, however, the magnitude of this difference has not been systematically explored in the literature. In order to investigate the synthetic interferometric (as well as spectroscopic) appearance of stars in the blue relative to the near-IR, we have computed grids of model atmospheres appropriate for six stars observed by VSII: four rapid rotators α Cep, α Leo, α Lyr, and η UMa, along with two slow rotators β UMa and β CMa. We predict these stars will appear smaller in angular size and exhibit higher visibilities in the first lobe of the visibility curve at 400 nm relative to 1746 nm at the same spatial frequencies, consistent with our expectations. This poster focuses on two of these stars, β UMa and α Leo. Synthetic spectra match archival spectra around 400nm best for β UMa and α Leo. We will compare our interferometric predictions for the nearly spherical, slow rotator, β UMa, and the highly distorted, rapid rotator, α Leo

    Meltwater Intrusions Reveal Mechanisms for Rapid Submarine Melt at a Tidewater Glacier

    Get PDF
    Submarine melting has been implicated as a driver of glacier retreat and sea level rise, but to date melting has been difficult to observe and quantify. As a result, melt rates have been estimated from parameterizations that are largely unconstrained by observations, particularly at the near-vertical termini of tidewater glaciers. With standard coefficients, these melt parameterizations predict that ambient melting (the melt away from subglacial discharge outlets) is negligible compared to discharge-driven melting for typical tidewater glaciers. Here, we present new data from LeConte Glacier, Alaska, that challenges this paradigm. Using autonomous kayaks, we observe ambient meltwater intrusions that are ubiquitous within 400 m of the terminus, and we provide the first characterization of their properties, structure, and distribution. Our results suggest that ambient melt rates are substantially higher (×100) than standard theory predicts and that ambient melting is a significant part of the total submarine melt flux. We explore modifications to the prevalent melt parameterization to provide a path forward for improved modeling of ocean-glacier interactions.This work was funded by NSF OPP Grants 1503910, 1504191, 1504288, and 1504521 and National Geographic Grant CP4-171R-17. Additionally, this research was supported by the NOAA Climate and Global Change Postdoctoral Fellowship Program, administered by UCAR’s Cooperative Programs for the Advancement of Earth System Science (CPAESS) under award #NA18NWS4620043B. These observations would not be possible without the skilled engineering team who developed the autonomous kayaks—including Jasmine Nahorniak, June Marion, Nick McComb, Anthony Grana, and Corwin Perren—and also the Captain and crew of the M/V Amber Anne. We thank Donald Slater and an anonymous reviewer for valuable feedback that improved this manuscript. Data availability: All of the oceanographic data collected by ship and kayak have been archived with the National Centers for Environmental Information (Accession 0189574, https://accession.nodc.noaa.gov/ 0189574). The glacier data have been archived at the Arctic Data Center (https://doi.org/10.18739/A22G44).Ye

    Timescales of variation in diversity and production of bacterioplankton assemblages in the Lower Mississippi River

    Get PDF
    Copyright: © 2020 Payne et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Rivers are characterized by rapid and continuous one-way directional fluxes of flowing, aqueous habitat, chemicals, suspended particles, and resident plankton. Therefore, at any particular location in such systems there is the potential for continuous, and possibly abrupt, changes in diversity and metabolic activities of suspended biota. As microorganisms are the principal catalysts of organic matter degradation and nutrient cycling in rivers, examination of their assemblage dynamics is fundamental to understanding system-level biogeochemical patterns and processes. However, there is little known of the dynamics of microbial assemblage composition or production of large rivers along a time interval gradient. We quantified variation in alpha and beta diversity and production of particle-associated and free-living bacterioplankton assemblages collected at a single site on the Lower Mississippi River (LMR), the final segment of the largest river system in North America. Samples were collected at timescales ranging from days to weeks to months up to a year. For both alpha and beta diversity, there were similar patterns of temporal variation in particle-associated and free-living assemblages. Alpha diversity, while always higher on particles, varied as much at a daily as at a monthly timescale. Beta diversity, in contrast, gradually increased with time interval of sampling, peaking between samples collected 180 days apart, before gradually declining between samples collected up to one year apart. The primary environmental driver of the temporal pattern in beta diversity was temperature, followed by dissolved nitrogen and chlorophyll a concentrations. Particle-associated bacterial production corresponded strongly to temperature, while free-living production was much lower and constant over time. We conclude that particle-associated and free-living bacterioplankton assemblages of the LMR vary in richness, composition, and production at distinct timescales in response to differing sets of environmental factors. This is the first temporal longitudinal study of microbial assemblage structure and dynamics in the LMR

    Tree thinning and fire affect ectomycorrhizal fungal communities and enzyme activities

    Get PDF
    Common ecological restoration treatments such as thinning trees and prescribed burning could result in changes to soil fungal communities and changes to the function of those communities. Ectomycorrhizal fungi are especially likely to be affected as they are symbionts on plant roots and exhibit host and niche preferences. Ectomycorrhizal fungi also produce extracellular enzymes that are important in soil nutrient cycling. We conducted a community survey of ectomycorrhizal fungi and assayed ectomycorrhizal root tip enzyme activity using substrate plugs in northern Mississippi upland oak–pine woodland plots differing in restoration history to explore the influence of woodland restoration on ectomycorrhizalfungal community composition and function. Restoration treatment was significant in explaining the occurrence of the most common fungal species (Russula xerampelina) and the most common family (Thelephoraceae) in the ectomycorrhizal fungal community survey. Highest potential laccase, peroxidase, and N-acetyl-b-D-glucosaminidase enzyme activity were found in a prescribed burn plot, and the lowest enzyme activities at a wildfire plot, where richness of ectomycorrhizal fungi was also lower. Different fungal families displayed significantly different enzymatic capabilities, with Hydnangiaceae having the highest laccase activity and Tuberaceae having significantly higher peroxidase and chitinase activity than several other families. These results suggest that restoration treatments can affect ectomycorrhizal fungal community composition and function, and better understanding these changes can aid understanding of the niches of ectomycorrhizal fungi and the impacts of restoration

    Oceanic plateau subduction beneath North America and its geological and geophysical implications

    Get PDF
    We use two independent approaches, inverse models of mantle convection and plate reconstructions, to predict the temporal and spatial association of the Laramide events to subduction of oceanic plateaus. Inverse convection models, consistent with vertical motions in western US, recover two prominent anomalies on the Farallon plate during the Late Cretaceous that coincide with paleogeographically restored Shatsky and Hess conjugate plateaus when they collided with North America. The distributed deformation of the Laramide orogeny closely tracked the passage of the Shatsky conjugate massif, suggesting that subduction of this plateau dominated the distinctive geology of the western United States. Subduction of the Hess conjugate corresponds to termination of a Latest Cretaceous arc magmatism and intense crustal shortening in Early Paleogene in northwest Mexico. At present, conjugates of the Shatsky and Hess plateaus are located beneath the east coast of North America, and we predict that +4% seismic anomalies in P and S velocities are associated with the remnant plateaus with sharp lateral boundaries detectable by the USArray seismic experiment. Flat subduction of the Shatsky conjugate caused drastic subsidence/uplift and tilt of the Colorado Plateau (CP). From the inverse convection calculations, we find that with the arrival of the flat slab, dynamic subsidence starts at the southwestern CP and reaches a maximum at ~86 Ma. Two stages of uplift follow the removal of the Farallon slab: one in Latest Cretaceous and the other in Eocene with a cumulative uplift of ~1.2 km. The southwestern plateau reaches a high dynamic topography in the Eocene which is sustained to the present. Both the descent of the slab and buoyant upwelling may have contributed to late Cenozoic plateau uplift. The CP tilts downward to the NE before the Oligocene, caused by NE trending subduction of the Farallon slab. The NE tilt diminishes and switches to a SW tilt during the Miocene when buoyant mantle upwellings occur

    Measurement of Spin-orbit Misalignment and Nodal Precession for the Planet around Pre-main-sequence Star PTFO 8-8695 from Gravity Darkening

    Get PDF
    PTFO 8-8695b represents the first transiting exoplanet candidate orbiting a pre-main-sequence star (van Eyken et al. 2012, ApJ, 755, 42). We find that the unusual lightcurve shapes of PTFO 8-8695 can be explained by transits of a planet across an oblate, gravity-darkened stellar disk. We develop a theoretical framework for understanding precession of a planetary orbit's ascending node for the case when the stellar rotational angular momentum and the planetary orbital angular momentum are comparable in magnitude. We then implement those ideas to simultaneously and self-consistently fit two separate lightcurves observed in 2009 December and 2010 December. Our two self-consistent fits yield Mp = 3.0 M_Jup and Mp = 3.6 M_Jup for assumed stellar masses of M* = 0.34 M_☉ and M* = 0.44 M_☉ respectively. The two fits have precession periods of 293 days and 581 days. These mass determinations (consistent with previous upper limits) along with the strength of the gravity-darkened precessing model together validate PTFO 8-8695b as just the second hot Jupiter known to orbit an M-dwarf. Our fits show a high degree of spin-orbit misalignment in the PTFO 8-8695 system: 69° ± 2° or 73°.1 ± 0°.5, in the two cases. The large misalignment is consistent with the hypothesis that planets become hot Jupiters with random orbital plane alignments early in a system's lifetime. We predict that as a result of the highly misaligned, precessing system, the transits should disappear for months at a time over the course of the system's precession period. The precessing, gravity-darkened model also predicts other observable effects: changing orbit inclination that could be detected by radial velocity observations, changing stellar inclination that would manifest as varying vsin i, changing projected spin-orbit alignment that could be seen by the Rossiter–McLaughlin effect, changing transit shapes over the course of the precession, and differing lightcurves as a function of wavelength. Our measured planet radii of 1.64 R_Jup and 1.68 R_Jup in each case are consistent with a young, hydrogen-dominated planet that results from a "hot-start" formation mechanism

    Automated detection of celiac disease on duodenal biopsy slides: a deep learning approach

    Full text link
    Celiac disease prevalence and diagnosis have increased substantially in recent years. The current gold standard for celiac disease confirmation is visual examination of duodenal mucosal biopsies. An accurate computer-aided biopsy analysis system using deep learning can help pathologists diagnose celiac disease more efficiently. In this study, we trained a deep learning model to detect celiac disease on duodenal biopsy images. Our model uses a state-of-the-art residual convolutional neural network to evaluate patches of duodenal tissue and then aggregates those predictions for whole-slide classification. We tested the model on an independent set of 212 images and evaluated its classification results against reference standards established by pathologists. Our model identified celiac disease, normal tissue, and nonspecific duodenitis with accuracies of 95.3%, 91.0%, and 89.2%, respectively. The area under the receiver operating characteristic curve was greater than 0.95 for all classes. We have developed an automated biopsy analysis system that achieves high performance in detecting celiac disease on biopsy slides. Our system can highlight areas of interest and provide preliminary classification of duodenal biopsies prior to review by pathologists. This technology has great potential for improving the accuracy and efficiency of celiac disease diagnosis.Comment: Accepted in Journal of Pathology Informatic

    Investigation of Control System and Display Variations on Spacecraft Handling Qualities for Docking with Stationary and Rotating Targets

    Get PDF
    This paper documents the investigation into the manual docking of a preliminary version of the Crew Exploration Vehicle with stationary and rotating targets in Low Earth Orbit. The investigation was conducted at NASA Langley Research Center in the summer of 2008 in a repurposed fixed-base transport aircraft cockpit and involved nine evaluation astronauts and research pilots. The investigation quantified the benefits of a feed-forward reaction control system thruster mixing scheme to reduce translation-into-rotation coupling, despite unmodeled variations in individual thruster force levels and off-axis center of mass locations up to 12 inches. A reduced rate dead-band in the phase-plane attitude controller also showed some promise. Candidate predictive symbology overlaid on a docking ring centerline camera image did not improve handling qualities, but an innovative attitude status indicator symbol was beneficial. The investigation also showed high workload and handling quality problems when manual dockings were performed with a rotating target. These concerns indicate achieving satisfactory handling quality ratings with a vehicle configuration similar to the nominal Crew Exploration Vehicle may require additional automation

    Superoxide Signaling in Perivascular Adipose Tissue Promotes Age-Related Artery Stiffness

    Get PDF
    We tested the hypothesis that superoxide signaling within aortic perivascular adipose tissue (PVAT) contributes to large elastic artery stiffening in old mice. Young (4-6 months), old (26-28 months), and old treated with 4-Hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPOL), a superoxide scavenger (1 mm in drinking water for 3 weeks), male C57BL6/N mice were studied. Compared with young, old had greater large artery stiffness assessed by aortic pulse wave velocity (aPWV, 436 ± 9 vs. 344 ± 5 cm s(-1)) and intrinsic mechanical testing (3821 ± 427 vs. 1925 ± 271 kPa) (both P \u3c 0.05). TEMPOL treatment in old reversed both measures of arterial stiffness. Aortic PVAT superoxide production was greater in old (P \u3c 0.05 vs. Y), which was normalized with TEMPOL. Compared with young, old controls had greater pro-inflammatory proteins in PVAT-conditioned media (P \u3c 0.05). Young recipient mice transplanted with PVAT from old compared with young donors for 8 weeks had greater aPWV (409 ± 7 vs. 342 ± 8 cm s(-1)) and intrinsic mechanical properties (3197 ± 647 vs. 1889 ± 520 kPa) (both P \u3c 0.05), which was abolished with TEMPOL supplementation in old donors. Tissue-cultured aortic segments from old in the presence of PVAT had greater mechanical stiffening compared with old cultured in the absence of PVAT and old with PVAT and TEMPOL (both, P \u3c 0.05). In addition, PVAT-derived superoxide was associated with arterial wall hypertrophy and greater adventitial collagen I expression with aging that was attenuated by TEMPOL. Aging or TEMPOL treatment did not affect blood pressure. Our findings provide evidence for greater age-related superoxide production and pro-inflammatory proteins in PVAT, and directly link superoxide signaling in PVAT to large elastic artery stiffness
    • …
    corecore