5,720 research outputs found

    PCA2: IRINOTECAN IN FIRST LINE TREATMENT OF METASTATIC COLORECTAL CANCER: IMPROVED SURVIVAL AND COST EFFECTIVENESS COMPARED WITH INFUSIONAL 5-FLUOROURACIL

    Get PDF

    Deriving percentage study weights in multi-parameter meta-analysis models: with application to meta-regression, network meta-analysis and one-stage individual participant data models.

    Get PDF
    Many meta-analysis models contain multiple parameters, for example due to multiple outcomes, multiple treatments or multiple regression coefficients. In particular, meta-regression models may contain multiple study-level covariates, and one-stage individual participant data meta-analysis models may contain multiple patient-level covariates and interactions. Here, we propose how to derive percentage study weights for such situations, in order to reveal the (otherwise hidden) contribution of each study toward the parameter estimates of interest. We assume that studies are independent, and utilise a decomposition of Fisher's information matrix to decompose the total variance matrix of parameter estimates into study-specific contributions, from which percentage weights are derived. This approach generalises how percentage weights are calculated in a traditional, single parameter meta-analysis model. Application is made to one- and two-stage individual participant data meta-analyses, meta-regression and network (multivariate) meta-analysis of multiple treatments. These reveal percentage study weights toward clinically important estimates, such as summary treatment effects and treatment-covariate interactions, and are especially useful when some studies are potential outliers or at high risk of bias. We also derive percentage study weights toward methodologically interesting measures, such as the magnitude of ecological bias (difference between within-study and across-study associations) and the amount of inconsistency (difference between direct and indirect evidence in a network meta-analysis)

    Effects of Explicit Convection on Future Projections of Mesoscale Circulations, Rainfall, and Rainfall Extremes over Eastern Africa

    Get PDF
    Eastern Africa’s fast-growing population is vulnerable to changing rainfall and extremes. Using the first pan-African climate change simulations that explicitly model the rainfall-generating convection, we investigate both the climate change response of key mesoscale drivers of eastern African rainfall, such as sea and lake breezes, and the spatial heterogeneity of rainfall responses. The explicit model shows widespread increases at the end of the century in mean (~40%) and extreme (~50%) rain rates, whereas the sign of changes in rainfall frequency has large spatial heterogeneity (from −50% to over +90%). In comparison, an equivalent parameterized simulation has greater moisture convergence and total rainfall increase over the eastern Congo and less over eastern Africa. The parameterized model also does not capture 1) the large heterogeneity of changes in rain frequency; 2) the widespread and large increases in extreme rainfall, which result from increased rainfall per humidity change; and 3) the response of rainfall to the changing sea breeze, even though the sea-breeze change is captured. Consequently, previous rainfall projections are likely inadequate for informing many climate-sensitive decisions—for example, for infrastructure in coastal cities. We consider the physics revealed here and its implications to be relevant for many other vulnerable tropical regions, especially those with coastal convection

    The effect of westerlies on East African rainfall and the associated role of tropical cyclones and the Madden–Julian Oscillation

    No full text
    Variability of rainfall in East Africa has major impacts on lives and livelihoods. From floods to droughts, this variability is important on short daily time‐scales to longer decadal time‐scales, as is apparent from the devastating effects of droughts in East Africa over recent decades. Past studies have highlighted the Congo airmass in enhancing East African rainfall. Our detailed analysis of the feature shows that days with a westerly moisture flow, bringing the Congo airmass, enhance rainfall by up to 100% above the daily mean, depending on the time of year. Conversely, there is a suppression of rainfall on days with a strong easterly flow. Days with a westerly moisture flux are in a minority in all seasons but we show that long rains with more westerly days are wetter, and that during the most‐recent decade which has had more frequent droughts (associated with the “Eastern African climate paradox”), there has been few days with such westerlies. We also investigate the influence of the Madden–Julian Oscillation (MJO) and tropical cyclones, and their interaction with the westerly flow. We show that days of westerly moisture flux are more likely during phases 3 and 4 of the MJO and when there are one or more tropical cyclones present. In addition, tropical cyclones are more likely to form during these phases of the MJO, and more likely to be coincident with westerlies when forming to the east of Madagascar. Overall, our analysis brings together many different processes that have been discussed in the literature but not yet considered in complete combination. The results demonstrate the importance of the Congo airmass on daily to climate time‐scales, and in doing so offers useful angles of investigation for future studies into prediction of East African rainfall

    Regional differences in the response of rainfall to convectively coupled Kelvin waves over tropical Africa

    Get PDF
    The representation of convection remains one of the most important sources of bias in global models and evaluation methods are needed that show that models provide the correct mean state and variability; both for the correct reasons. Here we develop a novel approach for evaluating rainfall variability due to CCKWs in this region. A phase cycle was defined for the CCKW cycle in OLR and used to composite rainfall anomalies. We characterize the observed (TRMM) rainfall response to CCKWs over tropical Africa in April and evaluate the performance of regional climate model (RCM) simulations: a parameterized convection simulation (P25) and the first pan-Africa convection permitting simulation (CP4). TRMM mean rainfall is enhanced and suppressed by CCKW activity and the occurrence of extreme rainfall and dry days is coupled with CCKW activity. Focusing on regional differences, we show for the first time that: there is a dipole between West Africa and the Gulf of Guinea involving onshore/offshore shifts in rainfall; and the transition to enhanced rainfall over west equatorial Africa occurs one phase before the transition over east equatorial Africa. The global model used to drive the RCMs simulated CCKWs with mean amplitudes of 75%-82% of observations. The RCMs simulated coherent responses to the CCKWs and captured the large-scale spatial patterns and phase relationships in rainfall although the simulated rainfall response is weaker than observations and there are regional biases which are bigger away from the equator. P25 produced a closer match to TRMM mean rainfall anomalies than CP4 although the response in dry days was more closely simulated by CP4

    Tracing the Conversion of Gas into Stars in Young Massive Cluster Progenitors

    Get PDF
    Whilst young massive clusters (YMCs; MM \gtrsim 104^{4} M_{\odot}, age \lesssim 100 Myr) have been identified in significant numbers, their progenitor gas clouds have eluded detection. Recently, four extreme molecular clouds residing within 200 pc of the Galactic centre have been identified as having the properties thought necessary to form YMCs. Here we utilise far-IR continuum data from the Herschel Infrared Galactic Plane Survey (HiGAL) and millimetre spectral line data from the Millimetre Astronomy Legacy Team 90 GHz Survey (MALT90) to determine their global physical and kinematic structure. We derive their masses, dust temperatures and radii and use virial analysis to conclude that they are all likely gravitationally bound -- confirming that they are likely YMC progenitors. We then compare the density profiles of these clouds to those of the gas and stellar components of the Sagittarius B2 Main and North proto-clusters and the stellar distribution of the Arches YMC. We find that even in these clouds -- the most massive and dense quiescent clouds in the Galaxy -- the gas is not compact enough to form an Arches-like (MM = 2x104^{4} M_{\odot}, Reff_{eff} = 0.4 pc) stellar distribution. Further dynamical processes would be required to condense the resultant population, indicating that the mass becomes more centrally concentrated as the (proto)-cluster evolves. These results suggest that YMC formation may proceed hierarchically rather than through monolithic collapse

    Deceptive body movements reverse spatial cueing in soccer

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.The purpose of the experiments was to analyse the spatial cueing effects of the movements of soccer players executing normal and deceptive (step-over) turns with the ball. Stimuli comprised normal resolution or point-light video clips of soccer players dribbling a football towards the observer then turning right or left with the ball. Clips were curtailed before or on the turn (-160, -80, 0 or +80 ms) to examine the time course of direction prediction and spatial cueing effects. Participants were divided into higher-skilled (HS) and lower-skilled (LS) groups according to soccer experience. In experiment 1, accuracy on full video clips was higher than on point-light but results followed the same overall pattern. Both HS and LS groups correctly identified direction on normal moves at all occlusion levels. For deceptive moves, LS participants were significantly worse than chance and HS participants were somewhat more accurate but nevertheless substantially impaired. In experiment 2, point-light clips were used to cue a lateral target. HS and LS groups showed faster reaction times to targets that were congruent with the direction of normal turns, and to targets incongruent with the direction of deceptive turns. The reversed cueing by deceptive moves coincided with earlier kinematic events than cueing by normal moves. It is concluded that the body kinematics of soccer players generate spatial cueing effects when viewed from an opponent's perspective. This could create a reaction time advantage when anticipating the direction of a normal move. A deceptive move is designed to turn this cueing advantage into a disadvantage. Acting on the basis of advance information, the presence of deceptive moves primes responses in the wrong direction, which may be only partly mitigated by delaying a response until veridical cues emerge

    Annotation of two large contiguous regions from the Haemonchus contortus genome using RNA-seq and comparative analysis with Caenorhabditis elegans

    Get PDF
    The genomes of numerous parasitic nematodes are currently being sequenced, but their complexity and size, together with high levels of intra-specific sequence variation and a lack of reference genomes, makes their assembly and annotation a challenging task. Haemonchus contortus is an economically significant parasite of livestock that is widely used for basic research as well as for vaccine development and drug discovery. It is one of many medically and economically important parasites within the strongylid nematode group. This group of parasites has the closest phylogenetic relationship with the model organism Caenorhabditis elegans, making comparative analysis a potentially powerful tool for genome annotation and functional studies. To investigate this hypothesis, we sequenced two contiguous fragments from the H. contortus genome and undertook detailed annotation and comparative analysis with C. elegans. The adult H. contortus transcriptome was sequenced using an Illumina platform and RNA-seq was used to annotate a 409 kb overlapping BAC tiling path relating to the X chromosome and a 181 kb BAC insert relating to chromosome I. In total, 40 genes and 12 putative transposable elements were identified. 97.5% of the annotated genes had detectable homologues in C. elegans of which 60% had putative orthologues, significantly higher than previous analyses based on EST analysis. Gene density appears to be less in H. contortus than in C. elegans, with annotated H. contortus genes being an average of two-to-three times larger than their putative C. elegans orthologues due to a greater intron number and size. Synteny appears high but gene order is generally poorly conserved, although areas of conserved microsynteny are apparent. C. elegans operons appear to be partially conserved in H. contortus. Our findings suggest that a combination of RNA-seq and comparative analysis with C. elegans is a powerful approach for the annotation and analysis of strongylid nematode genomes
    corecore