710 research outputs found

    The Comparative Pathology of Genetically Engineered Mouse Models for Neuroendocrine Carcinomas of the Lung

    Get PDF
    IntroductionBecause small-cell lung carcinomas (SCLC) are seldom resected, human materials for study are limited. Thus, genetically engineered mouse models (GEMMs) for SCLC and other high-grade lung neuroendocrine (NE) carcinomas are crucial for translational research.MethodsThe pathologies of five GEMMs were studied in detail and consensus diagnoses reached by four lung cancer pathology experts. Hematoxylin and Eosin and immunostained slides of over 100 mice were obtained from the originating and other laboratories and digitalized. The GEMMs included the original Rb/p53 double knockout (Berns Laboratory) and triple knockouts from the Sage, MacPherson, and Jacks laboratories (double knockout model plus loss of p130 [Sage laboratory] or loss of Pten [MacPherson and Jacks laboratories]). In addition, a GEMM with constitutive co-expression of SV40 large T antigen and Ascl1 under the Scgb1a1 promoter from the Linnoila laboratory were included.ResultsThe lung tumors in all of the models had common as well as distinct pathological features. All three conditional knockout models resulted in multiple pulmonary tumors arising mainly from the central compartment (large bronchi) with foci of in situ carcinoma and NE cell hyperplasia. They consisted of inter- and intra-tumor mixtures of SCLC and large-cell NE cell carcinoma in varying proportions. Occasional adeno- or large-cell carcinomas were also seen. Extensive vascular and lymphatic invasion and metastases to the mediastinum and liver were noted, mainly of SCLC histology. In the Rb/p53/Pten triple knockout model from the MacPherson and Jacks laboratories and in the constitutive SV40/T antigen model many peripherally arising non–small-cell lung carcinoma tumors having varying degrees of NE marker expression were present (non–small-cell lung carcinoma-NE tumors). The resultant histological phenotypes were influenced by the introduction of specific genetic alterations, by inactivation of one or both alleles of specific genes, by time from Cre activation and by targeting of lung cells or NE cell subpopulations.ConclusionThe five GEMM models studied are representative for the entire spectrum of human high-grade NE carcinomas and are also useful for the study of multistage pathogenesis and the metastatic properties of these tumors. They represent one of the most advanced forms of currently available GEMM models for the study of human cancer

    The Comparative Pathology of Genetically Engineered Mouse Models for Neuroendocrine Carcinomas of the Lung

    Get PDF
    Introduction: Because small-cell lung carcinomas (SCLC) are seldom resected, human materials for study are limited. Thus, genetically engineered mouse models (GEMMs) for SCLC and other high-grade lung neuroendocrine (NE) carcinomas are crucial for translational research. Methods: The pathologies of five GEMMs were studied in detail and consensus diagnoses reached by four lung cancer pathology experts. Hematoxylin and Eosin and immunostained slides of over 100 mice were obtained from the originating and other laboratories and digitalized. The GEMMs included the original Rb/p53 double knockout (Berns Laboratory) and triple knockouts from the Sage, MacPherson, and Jacks laboratories (double knockout model plus loss of p130 [Sage laboratory] or loss of Pten [MacPherson and Jacks laboratories]). In addition, a GEMM with constitutive co-expression of SV40 large T antigen and Ascl1 under the Scgb1a1 promoter from the Linnoila laboratory were included. Results: The lung tumors in all of the models had common as well as distinct pathological features. All three conditional knockout models resulted in multiple pulmonary tumors arising mainly from the central compartment (large bronchi) with foci of in situ carcinoma and NE cell hyperplasia. They consisted of inter- and intra-tumor mixtures of SCLC and large-cell NE cell carcinoma in varying proportions. Occasional adeno- or large-cell carcinomas were also seen. Extensive vascular and lymphatic invasion and metastases to the mediastinum and liver were noted, mainly of SCLC histology. In the Rb/p53/Pten triple knockout model from the MacPherson and Jacks laboratories and in the constitutive SV40/T antigen model many peripherally arising non-small-cell lung carcinoma tumors having varying degrees of NE marker expression were present (non-small-cell lung carcinoma-NE tumors). The resultant histological phenotypes were influenced by the introduction of specific genetic alterations, by inactivation of one or both alleles of specific genes, by time from Cre activation and by targeting of lung cells or NE cell subpopulations. Conclusion: The five GEMM models studied are representative for the entire spectrum of human high-grade NE carcinomas and are also useful for the study of multistage pathogenesis and the metastatic properties of these tumors. They represent one of the most advanced forms of currently available GEMM models for the study of human cancer. Key Words: Neuroendocrine carcinomas; Small-cell lung carcinoma; Lung carcinoma; Non–small-cell lung cancer; Genetically engineered mouse models; Patholog

    Mutational landscape of EGFR-, MYC-, and Kras-driven genetically engineered mouse models of lung adenocarcinoma

    Get PDF
    Genetically engineered mouse models (GEMMs) of cancer are increasingly being used to assess putative driver mutations identified by large-scale sequencing of human cancer genomes. To accurately interpret experiments that introduce additional mutations, an understanding of the somatic genetic profile and evolution of GEMM tumors is necessary. Here, we performed whole-exome sequencing of tumors from three GEMMs of lung adenocarcinoma driven by mutant epidermal growth factor receptor (EGFR), mutant Kirsten rat sarcoma viral oncogene homolog (Kras), or overexpression of MYC proto-oncogene. Tumors from EGFR- and Kras-driven models exhibited, respectively, 0.02 and 0.07 nonsynonymous mutations per megabase, a dramatically lower average mutational frequency than observed in human lung adenocarcinomas. Tumors from models driven by strong cancer drivers (mutant EGFR and Kras) harbored few mutations in known cancer genes, whereas tumors driven by MYC, a weaker initiating oncogene in the murine lung, acquired recurrent clonal oncogenic Kras mutations. In addition, although EGFR- and Kras-driven models both exhibited recurrent whole-chromosome DNA copy number alterations, the specific chromosomes altered by gain or loss were different in each model. These data demonstrate that GEMM tumors exhibit relatively simple somatic genotypes compared with human cancers of a similar type, making these autochthonous model systems useful for additive engineering approaches to assess the potential of novel mutations on tumorigenesis, cancer progression, and drug sensitivity

    A Wnt-producing niche drives proliferative potential and progression in lung adenocarcinoma

    Get PDF
    The heterogeneity of cellular states in cancer has been linked to drug resistance, cancer progression and the presence of cancer cells with properties of normal tissue stem cells. Secreted Wnt signals maintain stem cells in various epithelial tissues, including in lung development and regeneration. Here we show that mouse and human lung adenocarcinomas display hierarchical features with two distinct subpopulations, one with high Wnt signalling activity and another forming a niche that provides the Wnt ligand. The Wnt responder cells showed increased tumour propagation ability, suggesting that these cells have features of normal tissue stem cells. Genetic perturbation of Wnt production or signalling suppressed tumour progression. Small-molecule inhibitors targeting essential posttranslational modification of Wnt reduced tumour growth and markedly decreased the proliferative potential of lung cancer cells, leading to improved survival of tumour-bearing mice. These results indicate that strategies for disrupting pathways that maintain stem-like and niche cell phenotypes can translate into effective anti-cancer therapies

    Environment Impacts the Metabolic Dependencies of Ras-Driven Non-Small Cell Lung Cancer

    Get PDF
    Cultured cells convert glucose to lactate, and glutamine is the major source of tricarboxylic acid (TCA)-cycle carbon, but whether the same metabolic phenotype is found in tumors is less studied. We infused mice with lung cancers with isotope-labeled glucose or glutamine and compared the fate of these nutrients in tumor and normal tissue. As expected, lung tumors exhibit increased lactate production from glucose. However, glutamine utilization by both lung tumors and normal lung was minimal, with lung tumors showing increased glucose contribution to the TCA cycle relative to normal lung tissue. Deletion of enzymes involved in glucose oxidation demonstrates that glucose carbon contribution to the TCA cycle is required for tumor formation. These data suggest that understanding nutrient utilization by tumors can predict metabolic dependencies of cancers in vivo. Furthermore, these data argue that the in vivo environment is an important determinant of the metabolic phenotype of cancer cells.National Science Foundation (U.S.) (Grant T32GM007287

    A dominant-negative effect drives selection of TP53 missense mutations in myeloid malignancies

    Get PDF
    TP53, which encodes the tumor suppressor p53, is the most frequently mutated gene in human cancer. The selective pressures shaping its mutational spectrum, dominated by missense mutations, are enigmatic, and neomorphic gain-of-function (GOF) activities have been implicated. We used CRISPR-Cas9 to generate isogenic human leukemia cell lines of the most common TP53 missense mutations. Functional, DNA-binding, and transcriptional analyses revealed loss of function but no GOF effects. Comprehensive mutational scanning of p53 single-amino acid variants demonstrated that missense variants in the DNA-binding domain exert a dominant-negative effect (DNE). In mice, the DNE of p53 missense variants confers a selective advantage to hematopoietic cells on DNA damage. Analysis of clinical outcomes in patients with acute myeloid leukemia showed no evidence of GOF for TP53 missense mutations. Thus, a DNE is the primary unit of selection for TP53 missense mutations in myeloid malignancies

    High nuclear MSK1 is associated with longer survival in breast cancer patients

    Get PDF
    Purpose: Mitogen- and stress- activated kinases (MSKs) are important substrates of the mitogen-activated protein kinase (MAPK)-activated protein kinase family. MSK1 and MSK2 are both nuclear serine/threonine protein kinases, with MSK1 being suggested to potentially play a role in breast cancer cell proliferation, cell cycle progression, cell migration, invasion and tumour growth. The aim of the current study was to assess MSK1 protein expression in breast cancer tumour specimens, evaluating its prognostic significance. Methods: A large cohort of 1902 early stage invasive breast cancer patients was used to explore the expression of MSK1. Protein expression was examined using standard immunohistochemistry on tissue microarrays. Results: Low MSK1 protein expression was associated with younger age (P=0.004), higher tumour grade (P<0.001), higher Nottingham Prognostic Index scores (P=0.007), negative ER (P<0.001) and PR (P<0.001) status, and with triple-negative (P<0.001) and basal-like (P<0.001) phenotypes. Low MSK1 protein expression was significantly associated with shorter time to distant metastasis (P<0.001), and recurrence (P=0.013) and early death due to breast cancer (P=0.01). This association between high MSK1 expression and improved breast cancer-specific survival was observed in the whole cohort (P=0.009) and in the HER2 negative and non-basal like tumours (P=0.006 and P=0.024, respectively). Multivariate analysis including other prognostic variables indicated that MSK1 is not an independent marker of outcome. Conclusions: High MSK1 is associated with improved breast cancer-specific survival in early stage invasive breast cancer patients, and has additional prognostic value in HER2 negative and non-basal like disease. Although not an independent marker of outcome we believe such findings, and significant associations with well-established negative prognostic factors (age, grade, Nottingham Prognostic Index, hormone receptor status, time to distant metastasi

    Loss of p53 Ser18 and Atm Results in Embryonic Lethality without Cooperation in Tumorigenesis

    Get PDF
    Phosphorylation at murine Serine 18 (human Serine 15) is a critical regulatory process for the tumor suppressor function of p53. p53Ser18 residue is a substrate for ataxia-telangiectasia mutated (ATM) and ATM-related (ATR) protein kinases. Studies of mice with a germ-line mutation that replaces Ser18 with Ala (p53S18A mice) have demonstrated that loss of phosphorylation of p53Ser18 leads to the development of tumors, including lymphomas, fibrosarcomas, leukemia and leiomyosarcomas. The predominant lymphoma is B-cell lymphoma, which is in contrast to the lymphomas observed in Atm−/− animals. This observation and the fact that multiple kinases phosphorylate p53Ser18 suggest Atm-independent tumor suppressive functions of p53Ser18. Therefore, in order to examine p53Ser18 function in relationship to ATM, we analyzed the lifespan and tumorigenesis of mice with combined mutations in p53Ser18 and Atm. Surprisingly, we observed no cooperation in survival and tumorigenesis in compound p53S18A and Atm−/− animals. However, we observed embryonic lethality in the compound mutant animals. In addition, the homozygous p53Ser18 mutant allele impacted the weight of Atm−/− animals. These studies examine the genetic interaction of p53Ser18 and Atm in vivo. Furthermore, these studies demonstrate a role of p53Ser18 in regulating embryonic survival and motor coordination
    corecore