99 research outputs found

    UPR-Mediated Membrane Biogenesis in B Cells

    Get PDF
    The unfolded protein response (UPR) can coordinate the regulation of gene transcription and protein translation to balance the load of client proteins with the protein folding and degradative capacities of the ER. Increasing evidence also implicates the UPR in the regulation of lipid synthesis and membrane biogenesis. The differentiation of B lymphocytes into antibody-secreting cells is marked by significant expansion of the ER, the site for antibody synthesis and assembly. In activated B cells, the demand for membrane protein and lipid components leads to activation of the UPR transcriptional activator XBP1(S) which, in turn, initiates a cascade of biochemical events that enhance supplies of phospholipid precursors and build machinery for the synthesis, maturation, and transport of secretory proteins. The alterations in lipid metabolism that occur during this developmental transition and the impact of membrane phospholipid restriction on B cell secretory characteristics are discussed in this paper

    Pantothenate Kinase 1 Is Required to Support the Metabolic Transition from the Fed to the Fasted State

    Get PDF
    Coenzyme A (CoA) biosynthesis is regulated by the pantothenate kinases (PanK), of which there are four active isoforms. The PanK1 isoform is selectively expressed in liver and accounted for 40% of the total PanK activity in this organ. CoA synthesis was limited using a Pank1−/− knockout mouse model to determine whether the regulation of CoA levels was critical to liver function. The elimination of PanK1 reduced hepatic CoA levels, and fasting triggered a substantial increase in total hepatic CoA in both Pank1−/− and wild-type mice. The increase in hepatic CoA during fasting was blunted in the Pank1−/− mouse, and resulted in reduced fatty acid oxidation as evidenced by abnormally high accumulation of long-chain acyl-CoAs, acyl-carnitines, and triglycerides in the form of lipid droplets. The Pank1−/− mice became hypoglycemic during a fast due to impaired gluconeogenesis, although ketogenesis was normal. These data illustrate the importance of PanK1 and elevated liver CoA levels during fasting to support the metabolic transition from glucose utilization and fatty acid synthesis to gluconeogenesis and fatty acid oxidation. The findings also suggest that PanK1 may be a suitable target for therapeutic intervention in metabolic disorders that feature hyperglycemia and hypertriglyceridemia

    XBP1: a link between the unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic reticulum

    Get PDF
    When the protein folding capacity of the endoplasmic reticulum (ER) is challenged, the unfolded protein response (UPR) maintains ER homeostasis by regulating protein synthesis and enhancing expression of resident ER proteins that facilitate protein maturation and degradation. Here, we report that enforced expression of XBP1(S), the active form of the XBP1 transcription factor generated by UPR-mediated splicing of XBP1 mRNA, is sufficient to induce synthesis of phosphatidylcholine, the primary phospholipid of the ER membrane. Cells overexpressing XBP1(S) exhibit elevated levels of membrane phospholipids, increased surface area and volume of rough ER, and enhanced activity of the cytidine diphosphocholine pathway of phosphatidylcholine biosynthesis. These data suggest that XBP1(S) links the mammalian UPR to phospholipid biosynthesis and ER biogenesis

    Prevalence of Necrosis in C 2 -Ceramide-Induced Cytotoxicity in NB16 Neuroblastoma Cells

    Get PDF
    ABSTRACT The mechanism of cell death triggered by C 2 -ceramide was investigated using the NB16 neuroblastoma cell line. Treatment of NB16 cells with 20 M C 2 -ceramide for 20 h resulted in approximately 75% loss of cell viability, but only 25% of cells were scored as apoptotic based on terminal deoxynucleotidyl transferase nick-end labeling. Ultrastructural analysis revealed early development of necrotic cytoplasmic vacuolization. After 20 h of treatment with C 2 -ceramide, the majority of cells possessed necrotic morphology with pronounced cytoplasmic vacuolization and without any nuclear changes, although a quarter of the cell population also exhibited clear perinuclear chromatin condensation characteristic of apoptosis. Flow cytometric analysis of cells labeled with both annexin V and propidium iodide showed the rapid accumulation of C 2 -ceramide-treated cells in the necrotic/ late apoptotic fraction. In contrast, cells treated with tumor necrosis factor ␣ plus cycloheximide (TNF␣ ϩ CHX) first appeared in the early apoptotic fraction and then accumulated in the necrotic/late apoptotic fraction. Both C 2 -ceramide and TNF␣ ϩ CHX increased caspase 8-and 3-like activities in cytosolic extracts; however, treatment of cells with the broad-spectrum caspase inhibitor Nbenzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone protected NB16 cells from TNF␣ ϩ CHX-induced cell death but did not prevent C 2 -ceramide cytotoxicity. Although C 2 -ceramide triggered apoptosis in a fraction of the cells, cell death in the population was primarily caused by necrosis. Thus, C

    Cytokine secretion requires phosphatidylcholine synthesis

    Get PDF
    Altres ajuts: Cancer Center (CORE) Support grant CA 21765, i l'American Lebanese Syrian Associated CharitiesCholine cytidylyltransferase (CCT) is the rate-limiting enzyme in the phosphatidylcholine biosynthetic pathway. Here, we demonstrate that CCTα-mediated phosphatidylcholine synthesis is required to maintain normal Golgi structure and function as well as cytokine secretion from the Golgi complex. CCTα is localized to the trans-Golgi region and its expression is increased in lipopolysaccharide (LPS)-stimulated wild-type macrophages. Although LPS triggers transient reorganization of Golgi morphology in wild-type macrophages, similar structural alterations persist in CCTα-deficient cells. Pro-tumor necrosis factor α and interleukin-6 remain lodged in the secretory compartment of CCTα-deficient macrophages after LPS stimulation. However, the lysosomal-mediated secretion pathways for interleukin-1β secretion and constitutive apolipoprotein E secretion are unaltered. Exogenous lysophosphatidylcholine restores LPS-stimulated secretion from CCTα-deficient cells, and elevated diacylglycerol levels alone do not impede secretion of pro-tumor necrosis factor α or interleukin-6. These results identify CCTα as a key component in membrane biogenesis during LPS-stimulated cytokine secretion from the Golgi complex

    Impaired Coenzyme A metabolism affects histone and tubulin acetylation in Drosophila and human cell models of pantothenate kinase associated neurodegeneration

    Get PDF
    Pantothenate kinase-associated neurodegeneration (PKAN is a neurodegenerative disease with unresolved pathophysiology. Previously, we observed reduced Coenzyme A levels in a Drosophila model for PKAN. Coenzyme A is required for acetyl-Coenzyme A synthesis and acyl groups from the latter are transferred to lysine residues of proteins, in a reaction regulated by acetyltransferases. The tight balance between acetyltransferases and their antagonistic counterparts histone deacetylases is a well-known determining factor for the acetylation status of proteins. However, the influence of Coenzyme A levels on protein acetylation is unknown. Here we investigate whether decreased levels of the central metabolite Coenzyme A induce alterations in protein acetylation and whether this correlates with specific phenotypes of PKAN models. We show that in various organisms proper Coenzyme A metabolism is required for maintenance of histone- and tubulin acetylation, and decreased acetylation of these proteins is associated with an impaired DNA damage response, decreased locomotor function and decreased survival. Decreased protein acetylation and the concurrent phenotypes are partly rescued by pantethine and HDAC inhibitors, suggesting possible directions for future PKAN therapy development

    ENIGMA-anxiety working group : Rationale for and organization of large-scale neuroimaging studies of anxiety disorders

    Get PDF
    Altres ajuts: Anxiety Disorders Research Network European College of Neuropsychopharmacology; Claude Leon Postdoctoral Fellowship; Deutsche Forschungsgemeinschaft (DFG, German Research Foundation, 44541416-TRR58); EU7th Frame Work Marie Curie Actions International Staff Exchange Scheme grant 'European and South African Research Network in Anxiety Disorders' (EUSARNAD); Geestkracht programme of the Netherlands Organization for Health Research and Development (ZonMw, 10-000-1002); Intramural Research Training Award (IRTA) program within the National Institute of Mental Health under the Intramural Research Program (NIMH-IRP, MH002781); National Institute of Mental Health under the Intramural Research Program (NIMH-IRP, ZIA-MH-002782); SA Medical Research Council; U.S. National Institutes of Health grants (P01 AG026572, P01 AG055367, P41 EB015922, R01 AG060610, R56 AG058854, RF1 AG051710, U54 EB020403).Anxiety disorders are highly prevalent and disabling but seem particularly tractable to investigation with translational neuroscience methodologies. Neuroimaging has informed our understanding of the neurobiology of anxiety disorders, but research has been limited by small sample sizes and low statistical power, as well as heterogenous imaging methodology. The ENIGMA-Anxiety Working Group has brought together researchers from around the world, in a harmonized and coordinated effort to address these challenges and generate more robust and reproducible findings. This paper elaborates on the concepts and methods informing the work of the working group to date, and describes the initial approach of the four subgroups studying generalized anxiety disorder, panic disorder, social anxiety disorder, and specific phobia. At present, the ENIGMA-Anxiety database contains information about more than 100 unique samples, from 16 countries and 59 institutes. Future directions include examining additional imaging modalities, integrating imaging and genetic data, and collaborating with other ENIGMA working groups. The ENIGMA consortium creates synergy at the intersection of global mental health and clinical neuroscience, and the ENIGMA-Anxiety Working Group extends the promise of this approach to neuroimaging research on anxiety disorders

    UPR-Mediated Membrane Biogenesis in B Cells

    No full text
    The unfolded protein response (UPR) can coordinate the regulation of gene transcription and protein translation to balance the load of client proteins with the protein folding and degradative capacities of the ER. Increasing evidence also implicates the UPR in the regulation of lipid synthesis and membrane biogenesis. The differentiation of B lymphocytes into antibody-secreting cells is marked by significant expansion of the ER, the site for antibody synthesis and assembly. In activated B cells, the demand for membrane protein and lipid components leads to activation of the UPR transcriptional activator XBP1(S) which, in turn, initiates a cascade of biochemical events that enhance supplies of phospholipid precursors and build machinery for the synthesis, maturation, and transport of secretory proteins. The alterations in lipid metabolism that occur during this developmental transition and the impact of membrane phospholipid restriction on B cell secretory characteristics are discussed in this paper
    corecore