22 research outputs found

    Hepatitis C Virus Core Protein Induces Neuroimmune Activation and Potentiates Human Immunodeficiency Virus-1 Neurotoxicity

    Get PDF
    BACKGROUND: Hepatitis C virus (HCV) genomes and proteins are present in human brain tissues although the impact of HIV/HCV co-infection on neuropathogenesis remains unclear. Herein, we investigate HCV infectivity and effects on neuronal survival and neuroinflammation in conjunction with HIV infection. METHODOLOGY: Human microglia, astrocyte and neuron cultures were infected with cell culture-derived HCV or exposed to HCV core protein with or without HIV-1 infection or HIV-1 Viral Protein R (Vpr) exposure. Host immune gene expression and cell viability were measured. Patch-clamp studies of human neurons were performed in the presence or absence of HCV core protein. Neurobehavioral performance and neuropathology were examined in HIV-1 Vpr-transgenic mice in which stereotaxic intrastriatal implants of HCV core protein were performed. PRINCIPAL FINDINGS: HCV-encoded RNA as well as HCV core and non-structural 3 (NS3) proteins were detectable in human microglia and astrocytes infected with HCV. HCV core protein exposure induced expression of pro-inflammatory cytokines including interleukin-1β, interleukin-6 and tumor necrosis factor-α in microglia (p<0.05) but not in astrocytes while increased chemokine (e.g. CXCL10 and interleukin-8) expression was observed in both microglia and astrocytes (p<0.05). HCV core protein modulated neuronal membrane currents and reduced both β-III-tubulin and lipidated LC3-II expression (p<0.05). Neurons exposed to supernatants from HCV core-activated microglia exhibited reduced β-III-tubulin expression (p<0.05). HCV core protein neurotoxicity and interleukin-6 induction were potentiated by HIV-1 Vpr protein (p<0.05). HIV-1 Vpr transgenic mice implanted with HCV core protein showed gliosis, reduced neuronal counts together with diminished LC3 immunoreactivity. HCV core-implanted animals displayed neurobehavioral deficits at days 7 and 14 post-implantation (p<0.05). CONCLUSIONS: HCV core protein exposure caused neuronal injury through suppression of neuronal autophagy in addition to neuroimmune activation. The additive neurotoxic effects of HCV- and HIV-encoded proteins highlight extrahepatic mechanisms by which HCV infection worsens the disease course of HIV infection

    Brain energy rescue:an emerging therapeutic concept for neurodegenerative disorders of ageing

    Get PDF
    The brain requires a continuous supply of energy in the form of ATP, most of which is produced from glucose by oxidative phosphorylation in mitochondria, complemented by aerobic glycolysis in the cytoplasm. When glucose levels are limited, ketone bodies generated in the liver and lactate derived from exercising skeletal muscle can also become important energy substrates for the brain. In neurodegenerative disorders of ageing, brain glucose metabolism deteriorates in a progressive, region-specific and disease-specific manner — a problem that is best characterized in Alzheimer disease, where it begins presymptomatically. This Review discusses the status and prospects of therapeutic strategies for countering neurodegenerative disorders of ageing by improving, preserving or rescuing brain energetics. The approaches described include restoring oxidative phosphorylation and glycolysis, increasing insulin sensitivity, correcting mitochondrial dysfunction, ketone-based interventions, acting via hormones that modulate cerebral energetics, RNA therapeutics and complementary multimodal lifestyle changes

    Characterization of cardiovascular afferents to the hypothalamic supraoptic nucleus in the rat

    No full text
    The hypothalamic supraoptic nucleus (SON) in the rat contains neurons that synthesize either vasopressin (VP) or oxytocin and that receive prominent afferent connections of cardiovascular origin. In vivo electrophysiological studies were undertaken to characterise the selective depression of VP-secreting cell activity consequent to activation of peripheral baroreceptors. Electrical stimulation of the diagonal band of Broca evoked a similar selective inhibition of supraoptic VP neurons. Extracellular recordings in the diagonal band confirmed the involvement of this site in the baro-reflex input to the SON. Local application of bicuculline, a GABA antagonist, abolished both the diagonal band-evoked and the baroreceptor-induced inhibition of VP-secreting neurons. Anatomical observations at the ultrastructural level indicated that the diagonal band projection to the SON is indirect and involves an GABAergic interneuron located in the perinuclear zone adjacent to the SON.Another input to the SON that was studied arises in the subfornical organ, a circumventricular structure known to contain angiotensin II immunoreactive neurons. Electrical stimulation of the subfornical organ evoked an excitatory response in SON neurons that could be selectively attenuated by locally applied saralasin, an angiotensin II antagonist. This finding suggests a role for the peptide angiotensin II as a neurotransmitter in this projection.The collective results are discussed in the context of the three major neurocardiovascular pathways that influence vasopressin secretion from the neurohypophysis

    Amylin receptor: a common pathophysiological target in Alzheimer’s Disease and Diabetes Mellitus

    Get PDF
    Amylin (islet amyloid polypeptide) and amyloid beta protein (Abeta), which are deposited within pancreatic islets of diabetics and brains of Alzheimer’s patients respectively, share many biophysical and physiological properties. Emerging evidence indicates that the amylin receptor is a putative target receptor for the actions of human amylin and Abeta in the brain. The amylin receptor consists of the calcitonin receptor dimerized with a receptor activity-modifying protein and is widely distributed within central nervous system. Both amylin and Abeta directly activate this G protein-coupled receptor and trigger multiple common intracellular signal transduction pathways that can culminate in apoptotic cell death. Moreover, amylin receptor antagonists can block both the biological and neurotoxic effects of human amylin and Abeta. Amylin receptors thus appear to be involved in the pathophysiology of AD and diabetes, and could serve as a molecular link between the two conditions that are associated epidemiologically

    Single transmembrane domain insulin-like growth factor-II/mannose-6- phosphate receptor regulates central cholinergic function by activating a G-protein-sensitive, protein kinase C-dependent pathway

    No full text
    The insulin-like growth factor-II/mannose-6-phosphate (IGF-II/M6P) receptor is a single-pass transmembrane glycoprotein that plays an important role in the intracellular trafficking of lysosomal enzymes and endocytosis-mediated degradation of IGF-II. However, its role in signal transduction after IGF-II binding remains unclear. In the present study, we report that IGF-II/M6P receptor in the rat brain is coupled to a G-protein and that its activation by Leu27IGF-II, an analog that binds rather selectively to the IGF-II/M6P receptor, potentiates endogenous acetylcholine release from the rat hippocampal formation. This effect is mediated by a pertussis toxin (PTX)-sensitive GTP-binding protein and is dependent on protein kinase Cα(PKCα)-induced phosphorylation of downstream substrates, myristoylated alanine-rich C kinase substrate, and growth associated protein-43. Additionally, treatment with Leu27IGF-II causes a reduction in whole-cell currents and depolarization of cholinergic basal forebrain neurons. This effect, which is blocked by an antibody against the IGF-II/M6P receptor, is also sensitive to PTX and is mediated via activation of a PKC-dependent pathway. These results together revealed for the first time that the single transmembrane domain IGF-II/M6P receptor expressed in the brain is G-protein coupled and is involved in the regulation of central cholinergic function via the activation of specific intracellular signaling cascades
    corecore