56 research outputs found

    Engineering semiconductor nanowires for photodetection: From visible to terahertz

    Get PDF
    III-V semiconductor nanowires combine the properties of III-V materials with the unique advantages of the nanowire geometry, allowing efficient room temperature photodetection across a wide range of photon energies, from a few eV down to meV. For example, due to their nanoscale size, these show great promise as sub-wavelength terahertz (THz) detectors for near-field imaging or detecting elements within a highly integrated on-chip THz spectrometer. We discuss recent advances in engineering a number of sensitive photonic devices based on III-V nanowires, including InAs nanowires with tunable photoresponse, THz polarisers and THz detectors.The authors gratefully acknowledge financial support from the European Research Council (ERC Starting Grant ACrossWire), the Engineering and Physical Sciences Research Council (UK), the Australian Research Council, and the Australian National Fabrication Facility (ANFF). J. A. Alexander-Webber and H. J. Joyce especially thank the Royal Commission for the Exhibition of 1851 for their research fellowships

    Parameter Space of Atomic Layer Deposition of Ultrathin Oxides on Graphene.

    Get PDF
    Atomic layer deposition (ALD) of ultrathin aluminum oxide (AlOx) films was systematically studied on supported chemical vapor deposition (CVD) graphene. We show that by extending the precursor residence time, using either a multiple-pulse sequence or a soaking period, ultrathin continuous AlOx films can be achieved directly on graphene using standard H2O and trimethylaluminum (TMA) precursors even at a high deposition temperature of 200 °C, without the use of surfactants or other additional graphene surface modifications. To obtain conformal nucleation, a precursor residence time of >2s is needed, which is not prohibitively long but sufficient to account for the slow adsorption kinetics of the graphene surface. In contrast, a shorter residence time results in heterogeneous nucleation that is preferential to defect/selective sites on the graphene. These findings demonstrate that careful control of the ALD parameter space is imperative in governing the nucleation behavior of AlOx on CVD graphene. We consider our results to have model system character for rational two-dimensional (2D)/non-2D material process integration, relevant also to the interfacing and device integration of the many other emerging 2D materials.We acknowledge funding from the EPSRC (Grant EP/ K016636/1, GRAPHTED) and ERC (Grant 279342, InsituNANO). J.A.A.-W. acknowledges a Research Fellowship from Churchill College, Cambridge, U.K

    Engineering high charge transfer n-doping of graphene electrodes and its application to organic electronics.

    Get PDF
    Using thermally evaporated cesium carbonate (Cs2CO3) in an organic matrix, we present a novel strategy for efficient n-doping of monolayer graphene and a ∌90% reduction in its sheet resistance to ∌250 Ohm sq(-1). Photoemission spectroscopy confirms the presence of a large interface dipole of ∌0.9 eV between graphene and the Cs2CO3/organic matrix. This leads to a strong charge transfer based doping of graphene with a Fermi level shift of ∌1.0 eV. Using this approach we demonstrate efficient, standard industrial manufacturing process compatible graphene-based inverted organic light emitting diodes on glass and flexible substrates with efficiencies comparable to those of state-of-the-art ITO based devices.Funding via EU FP7 programme Grafol (Grant No. 285275) and EPSRC programme GRAPHTED (Grant No. EP/K016636/1) is acknowledged. P.R.K. acknowledges the Lindemann Trust Fellowship. J.A.A.-W. acknowledges a Research Fellowship from Churchill College, Cambridge. A.C.V. acknowledges the Conacyt Cambridge Scholarship and Roberto Rocca Fellowship.This is the author accepted manuscript. The final version is available from the Royal Society of Chemistry via http://dx.doi.org/10.1039/C5NR03246

    Catalyst Interface Engineering for Improved 2D Film Lift-Off and Transfer

    Get PDF
    The mechanisms by which chemical vapor deposited (CVD) graphene and hexagonal boron nitride (h-BN) films can be released from a growth catalyst, such as widely used copper (Cu) foil, are systematically explored as a basis for an improved lift-off transfer. We show how intercalation processes allow the local Cu oxidation at the interface followed by selective oxide dissolution, which gently releases the 2D material (2DM) film. Interfacial composition change and selective dissolution can thereby be achieved in a single step or split into two individual process steps. We demonstrate that this method is not only highly versatile but also yields graphene and h-BN films of high quality regarding surface contamination, layer coherence, defects, and electronic properties, without requiring additional post-transfer annealing. We highlight how such transfers rely on targeted corrosion at the catalyst interface and discuss this in context of the wider CVD growth and 2DM transfer literature, thereby fostering an improved general understanding of widely used transfer processes, which is essential to numerous other applications.We acknowledge funding from the ERC (InsituNANO, grant 279342). R.W. acknowledges an EPSRC Doctoral Training Award (EP/M506485/1). During this work, S.T. was supported in parts by a DFG research fellowship under grant TA 1122/1-1:1. J.A.A.-W. acknowledges a Research Fellowship from Churchill College, Cambridge. Z.A.V.V. acknowledges funding from ESPRC grant EP/L016087/1. P.B. and B.S.J. thank the Danish National Research Foundation Centre for Nanostructured graphene, DNRF103, and EU Horizon 2020 “Graphene Flagship” 696656. T.J.B. and P.R.W. acknowledge financial support from EU FP7-6040007 “GLADIATOR” and Innovation Fund Denmark Da-Gate 0603-005668B. P.R.K. acknowledges a Lindemann Trust Fellowship
    • 

    corecore