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ABSTRACT 

III–V semiconductor nanowires combine the properties of III–V materials with the unique advantages of the nanowire 
geometry, allowing efficient room temperature photodetection across a wide range of photon energies, from a few eV 
down to meV. For example, due to their nanoscale size, these show great promise as sub-wavelength terahertz (THz) 
detectors for near-field imaging or detecting elements within a highly integrated on-chip THz spectrometer. We discuss 
recent advances in engineering a number of sensitive photonic devices based on III–V nanowires, including InAs 
nanowires with tunable photoresponse, THz polarisers and THz detectors. 
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1. INTRODUCTION 
III–V semiconductor nanowires combine the properties of III-V materials, such as their direct bandgaps and high charge 
carrier mobilities, with the unique advantages of the quasi-one-dimensional nanowire geometry, such as efficient lateral 
strain relaxation, optical waveguiding, enhanced light trapping, and reduced cost and materials consumption relative to 
conventional planar devices. These properties are advantageous for photodetection, and indeed efficient nanowire-based 
photodetectors have been demonstrated across a wide range of photon energies, from a few eV down to meV, all 
operating at room temperature. Due to their nanoscale size, nanowires show particular promise as sub-wavelength 
terahertz (THz) detectors for near-field imaging or detecting elements within a highly integrated “on-chip” THz 
spectrometer. The sensitivity and nature of photodetection can be tailored by tuning the optical and electronic properties 
of the nanowires, for instance by passivating their surface states and tuning their charge carrier lifetimes. We discuss 
recent advances in engineering a number of sensitive photonic devices based on III–V nanowires, including InAs 
nanowire-based field effect transistors (FETs) with tunable photoresponse,1 THz polarisers based on GaAs nanowires,2 
and sub-wavelength THz detectors.3,4  
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