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ABSTRACT  

A positive shift in the Dirac-point in graphene field-effect transistors was observed with Hall-

effect coupled with Kelvin-probe measurements at room temperature. This shift can be explained 

by the asymmetrical behaviour of the contact resistance by virtue of the electron injection barrier 

at the source contact. As an outcome, an intrinsic resistance is given to allow a retrieval of an 

intrinsic carrier mobility found to be decreased with increasing gate bias, suggesting the 

dominance of short-range scattering in a single layer graphene field-effect transistor. These 

results analytically correlate the field-effect parameters with intrinsic graphene properties. 
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Ever since graphene was identified as a promising electronic material for newly emerging 

applications, there have been numerous studies on its material properties and associated device 

performance 
1-8
. This has led to a study of new device architectures, and in particular, attempts to 

identify the role of contact materials with the graphene layer 
9-11
, suggesting that contact 

properties significantly limit the performance of graphene devices. At the same time, there has 

been equally important emphasis on the study of the intrinsic electronic properties of “bulk” 

graphene 
4-6
. For example, it has been reported that the Dirac cones of a suspended graphene 

layer are reshaped by carrier interaction effects associated with the carrier density in graphene 

8,12
. However, when used as the channel in a field-effect device, it is important to understand 

how the graphene material properties correlate with device characteristics. On this, it has been 

reported that the Dirac point can be shifted due to contact properties at the source and drain 

electrodes, which was observed either by a four-point probe measurement at low temperatures 
13
, 

e.g. 60 K, or by employing different work-function metals for the source and drain electrodes 

14,15
. Although there have been previous studies on the effects of contacts on graphene field-

effect devices, these have not been used to understand how the intrinsic properties, such as 

contact effects, Dirac point, carrier density, and intrinsic carrier mobility are influenced at room 

temperature by an orthogonal electric field, and their inter-relation in a field-effect structure. 

This constitutes the focus of the investigations presented in this work. 

Using a combination of Hall-effect and Kelvin probe measurements at room temperature, 

we examine the symmetry in behaviour of the intrinsic resistance as a function of gate bias, 

retrieved from the incongruity in the contact and extrinsic resistances of the device. The resulting 

positive shift in the extrinsic Dirac point, from that of the intrinsic counterpart is explained by 

the asymmetrical behaviour of the contact resistance as a function of gate bias, suggesting the 
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 3

presence of an injection barrier for electrons by virtue of the higher work-function of the nickel 

(source contact) electrode compared to the graphene layer. In addition, Dirac voltage is observed 

to be the common intercept for the linear variation in electron and hole carrier densities. From 

the extracted intrinsic resistance and carrier density, the intrinsic carrier mobility is retrieved 

showing its decrease with increasing gate bias. This suggests dominance of short-range 

scattering, the rate of which can increase as more carriers are induced by a higher gate bias, and 

has been observed previously in single layer graphene. These results provide analytical insight 

 

Figure 1. Hall-effect and Kelvin probe measurements on the graphene field-effect 

transistor: (a) Micro-photo of the fabricated structure and its (b) 3-D view along with the 

electrical measurement set-up. Here, the channel length (L), width (W), and vertical separation 

(x12) are 250µm, 50µm, and 120µm, respectively. (c) Measured drain current (IDS) at VDS = 
10mV and the equivalent resistance (Rext = VDS / IDS) as a function of VGS for B = 0.45 T. (d)

Measured Vx1 and Vx2 as a function of VGS, and (e) measured Vy1 and Vy2 as a function of VGS. 

Here, the measured data in Figs.1c to e have a 5% error-bar. 
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 4

into the underlying physics across the field-dependent intrinsic parameters, while maintaining a 

consistency with earlier reports. 

Fig.1 shows representative results from Hall-effect coupled with Kelvin probe 

measurements of a graphene field-effect transistor; the detailed fabrication process has been 

published elsewhere 
17,18

, and can also be found in the Supporting Information. The 

photomicrograph of the measured test structure is shown in Fig.1a. The electrodes on the x-axis 

are used to measure the internal voltage drops and that on the y-axis are for measuring the Hall-

voltage (VH). The source (S) and drain (D) electrodes are on an oxidized high-doped silicon 

wafer which serves as the gate (G). The gate bias (VGS) is swept at a constant drain bias (VDS) in 

the presence of a magnetic field (B) applied orthogonally (i.e. along the z-axis) and uniformly 

over the graphene layer. Along with this, a drain current (IDS) at a small drain bias (VDS) and the 

equivalent extrinsic resistance (i.e. Rext = VDS / IDS) are measured as a function of VGS for B = 

0.45 T, as seen in Fig.1c. Here, VDS is fixed at 10mV which is sufficiently smaller than the gate 

bias and thermal voltage (about 26mV at room temperature, i.e. 300K) to satisfy the gradual 

channel approximation 
19
. In addition, the voltage levels (Vx1, Vx2) at the nodes of x1 and x2 are 

measured while measuring the voltage levels (Vy1, Vy2) at the nodes y1 and y2 as a function of 

VGS, respectively (see Figs.1d and e). Here, the extrinsic Dirac voltage (i.e. ) is retrieved at 

the minimum point of IDS (i.e. the peak of Rext), which is consistent with VGS at which Vy1 = Vy2. 

Note that the extrinsic Dirac voltage can be shifted due to atmospheric absorption 
19
.  

Based on the experimental results discussed with Fig.1, the gate voltage-dependence of 

the intrinsic parameters of the graphene device is shown in Fig.2. Firstly, the contact resistance 

(RC) is found from the difference between Rext and the intrinsic resistance (Rint), i.e. RC = Rext - 

Rint, which are as functions of VGS, respectively. Here, Rint is described by the following relation, 

ext

DiracV
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 5

 

,                                                        (1) 

where x12 is the distance between the electrodes x1 and x2, as indicated in Fig.1a. It is observed 

that the peak point of Rext (i.e. extrinsic Dirac voltage, ) is right-shifted by 4 volts from that 

of Rint (i.e. intrinsic Dirac voltage, ) (see Figs.2a and 2b). This suggests the presence of an 

electron injection barrier, corresponding to the asymmetrical characteristics of RC as a function 

of VGS, as can be seen in Fig.2a. Note that, if there was a hole injection barrier, this would be 

shifted the other way. Here, the sign of  is positive, as seen in Fig.2a, suggesting the 

graphene layer is p-type as its initial polarity. Note that is widely used as a signature of the 
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Figure 2.  Gate voltage-dependence of intrinsic parameters of the graphene transistor and 

underlying band diagram illustrating electron and hole injection: (a) Retrieved RC from the 

difference between Rext and Rint. (b) Extracted concentrations of the free electrons (n) and holes 

(p) as a function of VGS, respectively. (c) Conceptual band diagram to describe the blocking of 

electron injection at . (d) Conceptual band diagram at . 

Page 5 of 12

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 6

polarity of the graphene layer. However, it can be wrong depending on the extent of the shift 

voltage, i.e. 
tin

Dirac

ext

DiracShift VVV −≡ .  For example, If 
ext

DiracShift VV > (i.e. 0<tin

DiracV ), the graphene layer 

would be n-type. 

To explain this theoretically, a conceptual band diagram is shown in Figs.2c and d. 

Firstly, Fig.2c shows the impeded electron injection at , before Rext reaches its peak, 

in which the injected electron density (ninj) is still less than the injected hole density (pinj) even 

when n = p = pinj in the graphene layer at . Here, n and p are the respective free 

electron and hole densities within the graphene layer. In contrast, Rext at  now 

exhibits its peak when there is sufficient electron injection due to higher gate bias, resulting in 

ninj = pinj = p < n, as indicated in the conceptual band diagram seen in Fig.2d. Here, a higher gate 

bias induces more electrons in the channel, making the Schottky barrier narrower at the source 

contact eluding to higher electron injection (ninj). When ninj is balanced with injected holes (pinj), 

the extrinsic resistance (Rext) exhibits its peak at . 

We now extract the free electron (n) and hole (p) densities within the graphene layer from 

the Hall-effect measurements (see Fig.1e), as a function of VGS, respectively, using the following 

relation 
20-22

, 

,                                                          (2) 

where q is the elementary charge. As seen in Fig.2b, the extrapolation lines for electrons and 

holes, converge at rather than at . This further confirms that the peak of Rint is the 

intrinsic point for n = p. Here, the slope of the extrapolation line is proportional to the gate-

capacitance (CG), as labelled in Fig.2b.  

nti

DiracGS VV =

nti

DiracGS VV =

ext

DiracGS VV =

ext

DiracGS VV =

( )21

,
yy

DS

VVq

BI
pn

−
=

nti

DiracV ext

DiracV
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 7

Using the results in Figs.2a and 2b, a field-effect mobility of the graphene transistor can 

be retrieved. And there are two types of the field-effect mobility depending on whether the 

contact effect resides. One of them is the intrinsic carrier mobility (µint), where the contact effect 

is removed. And it can be extracted with the following macroscopic definition 
19
, 

 
pnQR ,int

int

1
=µ ,                                                              (3) 

where Qn,p = 
int

DiracGSG VVC −  = qn or qp. Similarly, the extrinsic mobility (µext) with the contact 

effect, as the other type, can be defined as 
1

, )( −= pnextext QRµ . Fig.3a shows the extracted µint and 

µext for electrons and holes, respectively. As can be seen, µint is higher than µext. In particular, the 

difference between µint and µext for electrons is much higher than the case of the hole mobility. 

This reflects the asymmetrical behaviour of the contact resistance as a function of gate bias, as 

discussed earlier with Fig.2a. As another observation from Fig.3a, the µint for both electrons and 

holes is found to be decreased with increasing the gate bias. Since the carrier density is linearly 

proportional to the gate voltage in the regimes A and B, i.e. qn, qp = int

DiracGSG VVC − , where each 

carrier mobility decays (see also Fig.2b), µint can be re-plotted as a function of the carrier 

density, as shown in Fig.3b. From this, we find that the µint is inversely proportional to the carrier 

density. This behaviour can be explained with the short-range scattering model 
23-25

. This trend is 

consistent with the expected behavior of a single-layer graphene transistor 
24,25

.  

In order to explain the intrinsic mobility behaviour, the following microscopic definition 

of the intrinsic mobility based on the short-range scattering model is employed 
24
, 

 
F

SF

E

qv τ
µ

2

int = ,                                                              (4) 
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 8

where vF is the Fermi velocity, τS is the short-range scattering time, and EF is the Fermi energy. 

From Eqs.3 and 4, the carrier density (n,p) is represented as a function of |EF|/τS, 

S

F

F

E

Rvq
pn

τint

22

1
, = .                                                       (5) 

With Eq.5, the correspondence between the carrier density and |EF|/τS is computed for vF = 10
8
 

cm/s, as seen in Fig.3c, clearly confirming their proportionality 
24,25

. These results indicate that 

the dominance of the short-range scattering which is proportional to the carrier density in a 

single-layer graphene-based field-effect transistor. 

 

 

Figure 3. Field-Effect Mobility and Carrier Density: (a) Mobility (µint and µext) as a function 

of VGS calibrated with . Here, the regime A and B show the mobility decays. (b) Intrinsic 

mobility (µint) vs. the carrier density (n, p). (c) Fermi energy per scattering time (|EF|/τ) as a 
function of the carrier density (n, p). Here, the dotted lines denote the fitted trends. 
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 9

A combination of Hall-effect and Kelvin probe measurements shows a shift in the 

extrinsic Dirac point from the intrinsic counterpart, suggesting the presence of an electron 

injection barrier and hence asymmetrical contact resistance as a function of gate bias. This 

indicates that the Dirac point is shifted by not only the polarity of the graphene layer but also by 

the contact properties at the source and drain junctions. In addition, the intrinsic carrier mobility 

is found to be decreased with increasing the gate bias, which is due to an increased short-range 

scattering of induced carriers in a single layer graphene-based field effect transistor. These 

results provide analytical physical insight into the correlation between the field-effect parameters 

and intrinsic material properties.  
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