119 research outputs found

    PHIPing Out: A Genetic Basis for Tumor Ulceration

    Get PDF
    Ulceration is a common negative prognostic marker of solid tumors including melanoma. The signaling basis of ulceration is being elucidated. PHIP has been found to be amplified in wild-type melanomas, resulting in Akt activation and aerobic glycolysis (Warburg effect), associated with ulceration. The ulceration phenotype likely represents the genotype of the reactive oxygen driven tumor, in which reactive oxygen drives angiopoietin-2 production, tumor growth, and invasion. This phenotype is amenable to pharmacologic intervention

    Targeting the Vulnerabilities of Oncogene Activation

    Get PDF

    Skin Barrier Function: The Interplay of Physical, Chemical, and Immunologic Properties

    Get PDF
    An intact barrier function of the skin is important in maintaining skin health. The regulation of the skin barrier depends on a multitude of molecular and immunological signaling pathways. By examining the regulation of a healthy skin barrier, including maintenance of the acid mantle and appropriate levels of ceramides, dermatologists can better formulate solutions to address issues that are related to a disrupted skin barrier. Conversely, by understanding specific skin barrier disruptions that are associated with specific conditions, such as atopic dermatitis or psoriasis, the development of new compounds could target signaling pathways to provide more effective relief for patients. We aim to review key factors mediating skin barrier regulation and inflammation, including skin acidity, interleukins, nuclear factor kappa B, and sirtuin 3. Furthermore, we will discuss current and emerging treatment options for skin barrier conditions

    Cooperative benefit for the combination of rapamycin and imatinib in tuberous sclerosis complex neoplasia

    Get PDF
    Tuberous sclerosis (TS) is a common autosomal-dominant disorder characterized by tumors of the skin, lung, brain, and kidneys. Monotherapy with rapamycin however resulted in partial regression of tumors, implying the involvement of additional pathways. We have previously implicated platelet-derived growth factor-BB in TS-related tumorigenesis, thus providing a rationale for a combination of mTOR/PDGF blockade using rapamycin and imatinib. Here, we test this combination using a well-established preclinical model of cutaneous tumorigenesis in TS, tsc2ang1 cells derived from a skin tumor from a mouse heterozygous for tsc2. Treatment of tsc2ang1 cells with a combination of rapamycin and imatinib led to an inhibition of proliferation compared with either vehicle treatment or treatment with rapamycin or imatinib monotherapy. Combination therapy also led to a decrease in Akt activation. Potent in vivo activity in animal experiments by combination therapy was noted, without toxicity to the animals. Our findings provide a rationale for the combined use of rapamycin and imatinib, both FDA approved drugs, for the treatment of TS

    Expression of the neural stem cell markers NG2 and L1 in human angiomyolipoma: are angiomyolipomas neoplasms of stem cells?

    Get PDF
    Angiomyolipomas are benign tumors of the kidney which express phenotypes of smooth muscle, fat, and melanocytes. These tumors appear with increased frequency in the autosomal dominant disorder tuberous sclerosis and are the leading cause of morbidity in adults with tuberous sclerosis. While benign, these tumors are capable of provoking life threatening hemorrhage and replacement of the kidney parenchyma, resulting in renal failure. The histogenesis of these tumors is currently unclear, although currently, we believe these tumors arise from perivascular epithelioid cells of which no normal counterpart has been convincingly demonstrated. Recently, stem cell precursors have been recognized that can give rise to smooth muscle and melanocytes. These precursors have been shown to express the neural stem cell marker NG2 and L1. In order to determine whether angiomyolipomas, which exhibit smooth muscle and melanocytic phenotypes, express NG2 and L1, we performed immunocytochemistry on a cell line derived from a human angiomyolipoma, and found that these cells are uniformly positive. Immunohistochemistry of human angiomyolipoma specimens revealed uniform staining of tumor cells, while renal cell carcinomas revealed positivity only of angiogenic vessels. These results support a novel histogenesis of angiomyolipoma as a defect in differentiation of stem cell precursors

    Secreted Frizzle-Related Protein 2 Stimulates Angiogenesis via a Calcineurin/NFAT Signaling Pathway

    Get PDF
    Secreted frizzle-related protein 2 (SFRP2), a modulator of Wnt-signaling, has recently been found to be overexpressed in the vasculature of 85% of human breast tumors, however its role in angiogenesis is unknown. We found that SFRP2 induced angiogenesis in the mouse Matrigel plug assay and the chick chorioallantoic membrane assay. SFRP2 inhibited hypoxia induced endothelial cell apoptosis, increased endothelial cell migration, and induced endothelial tube formation. The canonical Wnt-pathway was not affected by SFRP2 in endothelial cells, however, a component of the non-canonical Wnt/Ca++ pathway was affected by SFRP2, as demonstrated by an increase in NFATc3 in the nuclear fraction of SFRP2-treated endothelial cells. Tacrolimus, a calcineurin inhibitor which inhibits dephosphorylation of NFAT, inhibited SFRP2-induced endothelial tube formation. Tacrolimus 3 mg/kg/daily inhibited the growth of SVR angiosarcoma xenografts in mice by 46% (p=0.04). In conclusion, SFRP2 is a novel stimulator of angiogenesis that stimulates angiogenesis via a calcineurin/NFAT pathway, and may be a favorable target for the inhibition of angiogenesis in solid tumors
    corecore