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Down-Regulation of SOX2 Underlies the
Inhibitory Effects of the Triphenylmethane
Gentian Violet on Melanoma Cell
Self-Renewal and Survival

Silvia Pietrobono1, Andrea Morandi2, Sinforosa Gagliardi1, Gianni Gerlini3, Lorenzo Borgognoni3,
Paola Chiarugi2, Jack L. Arbiser4,5 and Barbara Stecca1,6
Human melanomas contain a population of tumor-initiating cells that are able to maintain the growth of the
tumor. We previously showed that the embryonic transcription factor SOX2 is essential for self-renewal and
tumorigenicity of human melanoma-initiating cells. However, targeting a transcription factor is still challenging.
Gentian violet (GV) is a cationic triphenylmethane dye with potent antifungal and antibacterial activity.
Recently, a combination therapy of imiquimod and GV has shown an inhibitory effect against melanoma
metastases. Whether and how GV affects melanoma cells remains unknown. Here we show that GV represses
melanoma stem cell self-renewal through inhibition of SOX2. Mechanistically, GV hinders EGFR activation and
inhibits the signal transducer and activator of transcription-3 [(STAT3)/SOX2] axis. Importantly, we show that GV
treatment decreases STAT3 phosphorylation at residue tyrosine 705, thus preventing the translocation of STAT3
into the nucleus and its binding to SOX2 promoter. In addition, GV affects melanoma cell growth by promoting
mitochondrial apoptosis and G2 cell cycle arrest. This study shows that in melanoma, GV affects both the stem
cell and the tumor bulk compartments, suggesting the potential use of GV in treating human melanoma alone
or in combination with targeted therapy and/or immunotherapy.
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INTRODUCTION
Cutaneous melanoma is one of the most aggressive types of
skin cancer. Early-stage melanoma can be cured in most
patients by surgical excision. On the contrary, once dissem-
inated, melanoma becomes a highly lethal condition.
Targeted therapies and immunotherapies have improved
progression-free and overall survival in this disease, extend-
ing median survival from 9 to over 25 months. However,
resistance emerges in most patients treated with targeted
therapy, and not all patients respond to immunotherapy;
therefore, most patients still die from metastatic disease
(Lo and Fisher, 2014).
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Accumulating evidence supports the existence of cancer
stem cells in human melanomas that possess the ability to
self-renew and differentiate into tumor bulk cells. These cells
drive tumor initiation, progression, and metastasis, and they
might contribute to relapse after therapy (Murphy et al.,
2014). Our group has previously shown that the embryonic
transcription factor SOX2 is required for self-renewal and
tumorigenicity of human melanoma-initiating cells (MICs)
(Santini et al., 2014). Although preclinical studies began to
evaluate strategies to inhibit SOX2 (Favaro et al., 2014;
Narasimhan et al., 2011; Stolzenburg et al., 2012), the
possibility to selectively target SOX2 remains a challenge.

The cationic triphenylmethane pharmacophore gentian
violet (GV) has been used for a long time as an antimycotic
and antibacterial agent (Docampo and Moreno, 1990).
Recent studies suggest that GV has also a potent inhibitory
activity against reduced nicotinamide adenine dinucleotide
phosphate oxidases (NOX) Nox2 and Nox4 (Bhandarkar
et al., 2009), whose expression is linked to tumor progres-
sion, and that it is able to induce cell death by disrupting the
mitochondrial system (Zhang et al., 2011). A recent study
reported a case of cutaneous melanoma metastasis success-
fully treated with a combination of GV and imiquimod. The
patient was free of melanoma with no recurrence for 2 years,
until death from congestive heart failure at 94 years of age
(Arbiser et al., 2012; Bonner and Arbiser, 2014). These find-
ings prompted us to investigate the mechanism of action of
GV in melanoma.

Here, we show that GV impairs melanoma stem cell
self-renewal and survival through the inhibition of SOX2.
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Mechanistically, GV negatively affects the signal transducer
and activator of transcription (STAT) 3/SOX2 axis by reducing
STAT3 phosphorylation, with consequent decreased STAT3
translocation into the nucleus and binding to SOX2 promoter.
In addition, we show that GV exerts a potent antiproliferative
effect on melanoma cells by promoting mitochondrial
apoptosis and G2 cell cycle arrest.

RESULTS
GV inhibits self-renewal and survival of melanoma spheres

Melanomas contain a subpopulation of MICs, which drives
melanoma initiation and progression and is responsible for
tumor relapse after therapy (Murphy et al., 2014). Hence, we
tested whether GV administration might affect the behavior of
melanoma spheres, which display self-renewal ability and
mimic the original tumor after transplantation into athymic
nude mice (Santini et al., 2012). Treatment of M33x, SSM2c,
and A375 cells with increasing doses (0.1, 0.25 and 0.5 mmol/
L) of GV led to a dose-dependent reduction in the number
of primary spheres and a progressive loss of their ability to
self-renew as secondary spheres (Figure 1a and b). GV-treated
primary and secondary melanoma spheres were reduced in
size (Figure 1c), thus suggesting an effect on proliferation
and/or death of progenitors or more differentiated cells
composing the sphere. Indeed, GV decreased proliferation, as
determined by analysis of BrdU incorporation, and increased
both early and late apoptosis and the number of cells testing
positive for cleaved caspase-3 (Figure 1def).

We next assessed whether GV might affect the expression
of stemness genes. Quantitative real-time PCR analysis
showed that GV treatment consistently reduced SOX2 mRNA
levels in M33x, SSM2c, and A375 melanoma spheres (see
Supplementary Figure S1a online). KLF4 expression was not
significantly affected by GV treatment, whereas OCT4 was
slightly decreased in SSM2c and increased in M33x and
A375 spheres (see Supplementary Figure S1a), likely because
of a compensatory effect. Western blot analysis confirmed the
GV-mediated decrease of SOX2 expression also at the protein
level in both melanoma cells and their derived melanoma
spheres (Figure 1g). Interestingly, SOX2 protein levels corre-
lated with sphere-formation and self-renewal abilities of
M33x, SSM2c, and A375 cells treated with increasing doses
of GV (Figure 1g vs. Figure 1a). Collectively, these data
indicate that GV impairs self-renewal and survival of mela-
noma spheres by reducing the expression of the embryonic
transcription factor SOX2.

GV affects maintenance of putative melanoma stem cells

As an alternative approach to test the effect of GV on mela-
noma stem cells, we sorted melanoma cells with high alde-
hyde dehydrogenase (ALDHhigh) activity (Luo et al., 2012;
Santini et al., 2012). Cytometric analysis showed a signifi-
cant reduction in the number of ALDHhigh M33x, SSM2c, and
A375 cells treated with increasing doses of GV (Figure 2a
and b). Treatment with GV reduced the expression of SOX2
in ALDHhigh putative MICs and, to a lesser extent, in
ALDHlow tumor bulk cells (Figure 2c). Moreover, GV drasti-
cally reduced the self-renewal ability of ALDHhigh, and only
marginally that of ALDHlow spheres (Figure 2d), consistent
with lower SOX2 levels in the ALDHlow subpopulation
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(Santini et al., 2014). AnnexinV/7-amino actinomycin D
(7-AAD) staining indicated that GV increased apoptosis in
both ALDHhigh and ALDHlow subpopulations (Figure 2e), as
also shown by the drastic reduction of the anti-apoptotic
factor BCL2 (Figure 2c). To determine whether GV-induced
cell death in ALDHhigh cells could be attributable to the
ability of GV to lead to a more differentiated status charac-
terized by lower ALDH activity, we sorted both ALDHhigh and
ALDHlow fractions after GV treatment (Figure 2f). Western
blot analysis showed activation of caspase-3 only in the GV-
enriched ALDHlow fraction. Notably, no induction of
apoptosis was observed in the residual ALDHhigh subpopu-
lation (Figure 2g). In an effort to provide additional evidence
that GV affects melanoma stem cells, we used CD271/
p75NTR, an established melanoma stem cell marker (Boiko
et al., 2010; Civenni et al., 2011). FACS analysis showed
that GV treatment reduced the number of CD271þ putative
melanoma stem cells in a dose-dependent manner in all three
cell types (see Supplementary Figure S1b and c), confirming
results obtained with Aldefluor (StemCell Technologies,
Vancouver, Canada) and sphere assays. Altogether, these
results indicate that GV decreases MIC survival and
self-renewal by affecting cancer stem cell features.

Enhanced expression of SOX2 partially rescues the
inhibitory effect of GV on melanoma stem cell self-renewal

We have previously shown that SOX2 is critical for the
maintenance of melanoma stem cells and for the survival and
proliferation of melanoma cells that constitute the tumor bulk
(Santini et al., 2014). Our data indicate that GV significantly
decreases SOX2 expression in melanoma cells and MICs;
therefore, we assessed whether SOX2 is involved in medi-
ating the effects of GV on MIC self-renewal and survival. To
test this hypothesis, we overexpressed SOX2 in patient-
derived melanoma cells SSM2c and M33x, using a
replication-incompetent lentivirus expressing SOX2 (LV-
SOX2) (Figure 3a). SOX2 overexpression reduced (in M33x
spheres) and nearly abolished (in SSM2c spheres) the inhib-
itory effect of GV on sphere formation (Figure 3b) and self-
renewal as secondary spheres (Figure 3c). On the other
hand, GV was able to overcome the effect of SOX2 on sur-
vival of more differentiated progenitors composing the
sphere. Indeed, ectopic SOX2 expression failed to prevent
the decrease in sphere size observed after GV treatment
(Figure 3d). Consistently, AnnexinV/7-AAD staining con-
firmed the induction of apoptosis in both control and SOX2-
overexpressing spheres (Figure 3e). These results suggest that
enhanced SOX2 expression is able to counteract the
apoptotic effect of GV on sphere-initiating cells but does not
prevent the apoptotic effect of GV on the tumor bulk. Alto-
gether these data indicate that down-regulation of SOX2
mediates, at least in part, the inhibitory effect of GV on
melanoma stem cell self-renewal.

GV inhibits melanoma cell viability by promoting
mitochondrial apoptosis and G2 cell cycle arrest

Our data indicate that GV acts through two parallel mecha-
nisms: the impairment of self-renewal ability of MICs in a
SOX2-dependent manner and the decrease of survival and
proliferation of melanoma tumor bulk cells independently of
SOX2 (Figure 3). To better define the pro-apoptotic and



Figure 1. GV inhibits melanoma sphere self-renewal and survival. (a) Primary and secondary melanoma spheres. Melanoma cells were treated for 72 hours

during primary sphere formation and left untreated to form secondary spheres. (b) Representative phase-contrast images of secondary SSM2c spheres as

indicated in a. Scale bar ¼ 100 mm. (c) Size of primary and secondary spheres treated with increasing doses of GV. (d) Quantification of BrdU incorporation

and (e) of early (annexin Vþ/7-AAD�) and late (annexin Vþ/7-AADþ) apoptotic cells in SSM2c primary spheres after GV treatment. (f) Percentage of caspase

3-positive melanoma cells after GV treatment. (g) Western blot of SOX2 in adherent melanoma cells and spheres after GV treatment. HSP90 was used as

a loading control. Data shown are mean � standard error of the mean. n ¼ 3. *P � 0.05 versus control. 7-AAD, 7-amino actinomycin D; GV, gentian violet;

N, number.
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antiproliferative effects of GV we used adherent M33x,
SSM2c, A375, M51, and SK-MEL-28 melanoma cells. GV
treatment resulted in a dose-dependent decrease of mela-
noma cell viability in all cell types (Figure 4a and see
Supplementary Figure S2a online). Cell cycle analysis
showed that GV induced a dose-dependent increase in the
percentage of cells in the G2 phase to the detriment of G0/G1
in SSM2c and M33x cells and, to a lesser extent, in A375
(Figure 4b). Consistently, the expression level of the G2/M
checkpoint regulator cyclin B1 was decreased in a dose-
dependent manner in all three cell lines (Figure 4c).
Conversely, GV failed to induce G2 cell cycle arrest in M51
www.jidonline.org 2061
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Figure 2. GV reduces the number and self-renewal of ALDHhigh melanoma stem cells. (a, b) Quantification and representative images of ALDHhigh cells after

GV treatment for 24 hours. ALDH inhibitor diethylaminobenzaldehyde was used as negative control. (c) Western blot of BCL2 and SOX2 in ALDHhigh and

ALDHlow subpopulations after GV treatment. (d) Number of secondary spheres in ALDHhigh and ALDHlow SSM2c cells treated with GV. (e) Cytometric analysis

of apoptotic cells in ALDHhigh and ALDHlow fractions 48 hours after GV treatment. (f) Representative images of sorted ALDHhigh and ALDHlow subpopulations.

Sorting gates were set at least one logarithm apart from the relative baseline fluorescence (drawn after the incubation with DEAB). (g) Western blot of cleaved

caspase-3 in ALDHlow- and ALDHhigh-sorted cells, as shown in f. HSP90 was used as loading control. Data shown are mean � standard error of the mean. n¼ 3.

*P � 0.05 versus control. ALDH, aldehyde dehydrogenase; Cleav, cleaved; DEAB, diethylaminobenzaldehyde; GV, gentian violet; N, number.
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and SK-MEL-28 melanoma cells (see Supplementary
Figure S2b). AnnexinV/7-AAD staining showed dose-
dependent induction of both early (annexin Vþ/7-AADe)
and late (annexin Vþ/7-AADþ) apoptosis in all melanoma
Journal of Investigative Dermatology (2016), Volume 136
cells treated with increasing doses of GV (Figure 4d and see
Supplementary Figure S2c).

A previous study showed that cationic triphenylmethanes
can induce cell death by disrupting the mitochondrial



Figure 3. SOX2 mediates the inhibitory effect of GV on melanoma stem cell self-renewal. (a) Western blot of SOX2 in M33x and SSM2c spheres transduced

with LV-c or LV-SOX2. HSP90 was used as loading control. (b) Primary and (c) secondary sphere assay shows that ectopic SOX2 counteracts the decrease in the

number of spheres induced by GV treatment. (d) Size of primary SSM2c spheres transduced with LV-c and LV-SOX2. (e) Quantification of the percentage of early

(annexin Vþ/7-AAD�) and late (annexin Vþ/7-AADþ) apoptotic cells in SSM2c spheres transduced with LV-c and LV-SOX2. Data shown are mean � standard

error of the mean. n ¼ 3. *P � 0.05 versus control. GV, gentian violet.
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system, followed by release of cytochrome C and apoptosis-
inducing factors (Zhang et al., 2011). Indeed, GV treatment
increased the BAX/BCL2 ratio, an indicator of susceptibility
to mitochondrial apoptosis (Oltvai et al., 1993), and induced
cleaved caspase-3 in all cell lines at nanomolar doses
(Figure 4c and see Supplementary Figure S2d). In addition,
treatment with a high dose of GV (� 0.5 mmol/L in SSM2c
and �0.25 mmol/L in A375) induced an increase of the
cytoplasmic fraction of cytochrome C (Figure 4e) and an
enhancement of mitochondrial reactive oxygen species
(ROS) production (Figure 4f), suggesting that high doses
of GV activate the mitochondrial apoptotic pathway in
melanoma cells. Inhibition of mitochondrial ROS with
2-(2,2,6,6-tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)
triphenylphosphonium chloride (i.e., mitoTEMPO), a specific
scavenger ofmitochondrial superoxide (Dikalova et al., 2010),
partially prevented late apoptosis without affecting early
apoptosis in all melanoma cell types (see Supplementary
Figure S3 online).

We next tested whether GV treatment might affect p53
activity (Garufi et al., 2014). Although GV increased total p53
levels in A375 but not in SSM2c and M33x cells (Figure 4c),
quantitative real-time PCR analysis showed that GV treatment
increased the expression of the p53-target genes PUMA, PIG3,
and, partially, NOXA in all cell types (see Supplementary
Figure S4a online). In addition, silencing of p53 in A375 and
SSM2c cells decreased basal apoptosis compared with in
control cells and reduced sensitivity to GV in terms of early
apoptosis (see Supplementary Figure S4bed), suggesting that
GV-induced cell death is partially dependent on p53 function.

Altogether these data indicate that GV inhibits melanoma
cell growth with different dose-dependent effects: at low
www.jidonline.org 2063
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Figure 4. GV impairs melanoma cell viability by promoting mitochondrial apoptosis and G2 cell cycle arrest. (a) Cell viability assay 48 hours after GV

treatment. Controls (DMSO) were set to 100%. (b) Cell cycle analysis after GV treatment (48 hours). (c) Western blot of cyclin B1, BCL2, BAX, total and cleaved
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doses it induces G2 cell cycle arrest, whereas at high doses it
mainly promotes mitochondrial apoptosis.

GV suppresses STAT3 activation through an
EGFR-dependent mechanism

Triphenylmethane dyes have been show to inhibit ROS pro-
duction by targeting Nox4 and Nox2 in different biological
contexts (Bhandarkar et al., 2009; Mukawera et al., 2015;
Perry et al., 2006). Expression of NOX genes was investi-
gated in six patient-derived primary melanoma cells, in four
melanoma cell lines and in normal human epidermal mela-
nocytes. Quantitative real-time PCR showed that NOX1 and
NOX4 were variably expressed among melanoma cells,
whereas NOX2 was expressed in only two cell lines (see
Supplementary Figure S5a online). One possible explanation
for lack of G2 cell cycle arrest in M51 and SK-MEL-28
melanoma cells upon GV treatment (see Supplementary
Figure S2b) might be the absence of NOX4 expression in
these two cell lines (Yamaura et al., 2009). To determine
whether GV inhibited ROS production in melanoma cells,
we used different assays. Using the oxidant-sensing fluores-
cent probe 2’,7’-dichlorodihydrofluorescein diacetate (i.e.,
DCFH-DA), we failed to observe a decrease of intracellular
ROS upon GV treatment in M33x and SSM2c cells. Unex-
pectedly, we documented an increase in ROS level in A375
cells, which was also confirmed by confocal microscopy
using CellRox dye (CellRox, Tel Aviv, Israel) (see
Supplementary Figure S5b and c). Consistently, GV treatment
decreased the reduced form of Src in A375 cells without
affecting phosphorylated Src (see Supplementary Figure S5d
and e).

A previous study showed that triphenylmethane analogs
exert a strong inhibitory activity against tyrosine-kinase
receptors (Antipova et al., 2008). Therefore, we hypothe-
sized that GV might act on EGFR, which is expressed in
almost all melanoma cell lines (see Supplementary
Figure S6a online). To test whether GV affects EGFR activa-
tion, we immunoprecipitated endogenous EGFR and per-
formed Western blot with an anti-phospho-Tyr antibody. The
experiment showed that GV treatment reduced EGFR phos-
phorylation but did not change total levels of EGFR
(Figure 5a). Consistently, GV reduced phospho-AKT (Ser473)
and phosphoeextracellular signal-regulated kinasee1/2
levels (see Supplementary Figure S6b), two downstream
mediators of EGFR activation. GV strongly decreased STAT3
phosphorylation at Tyr705 and hence its activation both in
adherent and melanoma spheres (Figure 5b), thus suggesting
the existence of an inhibitory mechanism on STAT3.

To further confirm the involvement of EGFR on STAT3
activation, melanoma cells were treated with GV alone or in
the presence of the EGFR inhibitor gefitinib (Patel et al., 2011;
Wakeling et al., 2002). Western blot analysis showed that
gefitinib down-regulated STAT3 by itself, and that
caspase-3, and p53 in melanoma cells treated with GV for 48 hours. HSP90 wa

is shown. (d) Cytometric analysis of apoptotic cells after GV treatment for 48 ho

GV treatment. Fibrillarin (nuclear) and GAPDH (cytosolic) were used as loading

stained with MitoSOX (Thermo Fisher Scientific, Waltham, MA) and analyzed by

the mean. n ¼ 3. *P � 0.05 versus control. Cleav, cleaved; Cytc, cytochrome; G

reactive oxygen species; WCE, whole cell extract.
combination of gefitinib and GV prevented the effect of GV
on STAT3 activation (see Supplementary Figure S6c).
Furthermore, treatment of melanoma cells with ruxolitinib, a
specific JAK1/2 inhibitor (Ostojic et al., 2011), completely
abrogated STAT3 phosphorylation (see Supplementary
Figure S6d). Altogether, these data suggest that GV reduces
phospho-STAT3 by inhibiting EGFR activation, likely through
a JAK-dependent and ROS/Src-independent mechanism.

The inhibitory effect of GV on EGFR activation might also
explain the induction of apoptosis on adherent melanoma
cells. PI3K/AKT signaling has been shown to inhibit
programmed cell death through a shift from pro- to anti-
apoptotic signals (Fulda, 2012) or by inducing Mdm2-
mediated p53 degradation (Ogawara et al., 2002).
Consistently, our data showed that inhibition of PI3K
signaling by LY294002 (Aziz et al., 2009) primed melanoma
cells to mitochondrial apoptosis and minimized the ability of
GV to further enhance both early and late apoptosis (see
Supplementary Figure S7 online).

GV down-regulates SOX2 expression by inhibiting STAT3
in melanoma cells

STAT3 phosphorylation at tyrosine 705 has been shown to
mediate STAT3 translocation into the nucleus as a dimer, thus
allowing dimeric STAT3 to bind target genes and to promote
gene transcription (Darnell, 1997). Western blot analysis of
STAT3 confirmed that treatment with GV reduced nuclear
STAT3 levels and increased its cytoplasmic fraction in both
SSM2c and A375 melanoma cells (Figure 5c).

Because STAT3 positively correlates with SOX2 in several
contexts (Foshay and Gallicano, 2008; Zhao et al., 2015), we
investigated whether STAT3 directly regulates SOX2 expres-
sion in melanoma cells. Bioinformatic analysis identified a
putative site possessing the STAT3 canonical binding motif
TTC(N)2-4GAA (Darnell, 1997; Ehret et al., 2001) within the
proximal region of the SOX2 promoter (e447 base pairs [bp]/
e426 bp) (Figure 5d). Chromatin immunoprecipitation in
melanoma cells showed STAT3 bound to SOX2 promoter at
approximately 400 bp upstream to the SOX2 transcription
start site (Figure 5d). Interestingly, treatment with GV pre-
vented STAT3 binding to SOX2 promoter, consistent with its
cytoplasmic accumulation (Figure 5c). To confirm that SOX2
is a direct transcriptional target of STAT3 in melanoma, we
co-transfected STAT3 expression construct with the SOX2
promoter driven by a luciferase reporter (e601bp/þ293bp),
as previously described (Eberl et al., 2012). Luciferase assay
showed that STAT3 increased SOX2 promoter activity by
3-fold and that treatment with GV reverted the effect of
STAT3 on the endogenous SOX2 promoter (Figure 5e), indi-
cating that GV reduces SOX2 expression through inhibition
of STAT3 transcriptional activity. To further validate these
results, we performed site-directed mutagenesis to mutate the
tyrosine in position 705 into a glutamic acid to mimic STAT3
s used as loading control. Densitometric quantification of BAX/BCL2 ratio

urs. (e) Western blot of cytochrome C in cytosolic extracts 48 hours after

control. (f) Quantification of mitochondrial ROS in cells treated with GV,

fluorescence-activated cell sorting. Data shown are mean � standard error of

APDH, glyceraldehyde-3-phosphate dehydrogenase; GV, gentian violet; ROS,
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Figure 5. GV inhibits STAT3/SOX2 axis. (a) Immunoprecipitation of endogenous EGFR in A375 cells. (b) Western blot of pSTAT3Y705 and STAT3 in adherent

cells and spheres treated with GV, for 24 and 72 hours, respectively. HSP90 was used as loading control. (c) STAT3 cellular localization 24 hours after GV
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phosphorylation and activation, and we overexpressed both
wild-type and STAT3 mutant Tyr705Glu (Y705E). Western
blot analysis in SSM2c cells showed that ectopic expression
of the constitutive active STAT3 mutant, but not of the wild-
type, counteracted the decrease of SOX2 protein levels
induced by GV treatment (Figure 5f). Consistently, over-
expression of both wild-type STAT3 and STAT3-Y705E
increased the number of primary spheres compared with the
empty vector, but only STAT3-Y705E prevented the inhibitory
effect of GV on sphere formation (Figure 5g and h). Collec-
tively, our results indicate that GV inhibits melanoma stem
cell survival and self-renewal by affecting the EGFR/STAT3/
SOX2 axis (Figure 5i).

DISCUSSION
Current therapies to treat melanoma induce only temporary
benefits because they are predominantly directed toward
bulk tumor cells and fail to eradicate MICs, which drive
tumor regrowth and originate recurrent tumors characterized
by high aggressiveness, fast spreading, and resistance to
therapy (Frank et al., 2010; Murphy et al., 2014). Hence,
strategies that kill or induce differentiation of MICs may
improve prognosis and contribute to curing patients (Schlaak
et al., 2012; Mukherjee et al., 2015). Treatment of cutaneous
melanoma metastases with a combination of GV and
imiquimod has been shown to prevent melanoma recurrence
(Arbiser et al., 2012; Bonner and Arbiser, 2014). However, it
is not known whether and how GV affects melanoma cell
growth and stemness.

In this study, we elucidated two antitumor mechanisms of
GV. First, we show that GV inhibits melanoma stem cell self-
renewal by down-regulating the transcription factor SOX2
through STAT3 (Figure 5). Second, we show that GV harbors a
potent antiproliferative effect on melanoma bulk by pro-
moting mitochondrial apoptosis and G2 cell cycle arrest.
Altogether these findings suggest that GV might become an
effective compound in the treatment of human melanoma,
alone or in combinatory regimen.

The major finding of this study is that GV acts on mela-
noma stem cells by inhibiting SOX2 through the EGFR/STAT3
signaling axis. Indeed, ectopic SOX2 expression protects
MICs from the effects of GV. This result is in agreement with
the critical role of SOX2 in MIC maintenance (Santini et al.,
2014) and with studies showing the importance of SOX2 in
mediating the effects of EGFR activation in other cancer types
(Chou et al., 2013; Eberl et al., 2012; Rybak and Tang, 2013).
Because SOX2 has been shown to induce de-differentiation
and to impart stem-like signatures in several tumors (Weina
and Utikal, 2014), inhibition of SOX2 by GV may increase
the number of differentiated cells, thus sensitizing them to
GV-mediated apoptosis. This hypothesis is consistent with the
observed decrease of melanoma cells expressing high ALDH
treatment. GAPDH (cytoplasm) and fibrillarin (nuclear) were used as loading cont

used as negative control and set to 1. Data represent mean � standard error of

luciferase activities were firefly/Renilla ratios, with the level induced by control

(f) Western blot of SOX2 and BCL2 in SSM2c transfected with Myc-STAT3wt, Myc-

formation and representative images in cells transfected with Myc-STAT3wt, Myc-S

mechanism of action of GV. *P < 0.05 versus control. GAPDH, glyceraldehyde-

transducer and activator of transcription-3.
activity and CD271, two melanoma stem cell markers (Boiko
et al., 2010; Civenni et al., 2011; Luo et al., 2012; Santini
et al., 2012), and with the observation that ALDHhigh puta-
tive MICs become sensitive to apoptotic stimuli induced by
GV when they are differentiated.

Although several studies have highlighted potential strate-
gies to inhibit SOX2, to date the ability to selectively target
SOX2 remains a challenge. In this respect, a molecule such
as GV that is well tolerated in humans and can be applied
topically on cutaneous melanoma lesions might be an inter-
esting agent to block SOX2 activity and can be regarded as a
therapeutic option in combination with targeted therapy and
immunotherapy.

Previous studies indicated that GV affects ROS production
by targeting NOX enzymes (Bhandarkar et al., 2009;
Mukawera et al., 2015; Perry et al., 2006). Nevertheless,
here we show that GV blocks melanoma cell growth in vitro
and negatively affects the melanoma stem cell compartment
without reducing ROS production. This may depend on the
fact that melanoma cells undergo mitochondrial apoptosis
that may mask the effect of GV. On the other hand, our data
indicate that both NOX4-positive (A375, SSM2c, and M33x)
and NOX4-negative (SK-MEL-28 and M51) melanoma cells
are equally sensitive to GV-induced apoptotic stimuli,
whereas only NOX4-positive cells display G2 cell cycle
arrest (Figure 4 and see Supplementary Figure S2), consistent
with a previous report (Yamaura et al., 2009).

Our study shows that GV inhibits activation of STAT3 by
EGFR in a Src-independent and JAK-dependent manner. This
is supported by studies showing that STAT3 activation in
melanoma cells relies on JAK or protein-tyrosine phosphatase
rather than on Src (Flashner-Abramson et al., 2016; Kreis
et al., 2007;). STAT3 has been reported to enhance invasion
and metastasis (Fofaria and Srivastava, 2014) and to mediate
the acquisition of a stemness phenotype in melanoma cells
(Ohanna et al., 2013). In addition, inhibition of STAT3 has
been shown to induce a significant regression of melanoma
growth in vivo (Yin et al., 2013). Hence, targeting the EGFR-
JAK-STAT3 signaling by GV could represent a valid strategy to
treat melanoma.

In conclusion, we uncovered an EGFR/STAT3/SOX2
signaling cascade that regulates melanoma stem cell
behavior and identified GV as an inhibitor of this axis. GV has
been used as an antibacterial, antimycotic, and anti-
angiogenic agent. More recently, GV has shown a strong
anticancer activity both in vitro and in vivo (Bhandarkar
et al., 2009; Cunniff et al., 2015; Mukawera et al., 2015;
Perry et al., 2006; Yamaguchi et al., 2015) with minimal
adverse effects, thus making it safe for use in humans (Arbiser,
2009). Taken together, our data suggest that GV could be a
good candidate for both chemoprevention and therapeutic
treatment of human melanoma. Further studies will help give
rol. (d) Chromatin immunoprecipitation on SOX2 proximal promoter. IgG was

the mean. n ¼ 3. (e) Quantification of dual-luciferase reporter assay. Relative

equated to 1. Data represent mean � standard error of the mean. n ¼ 4.

STAT3Y705E, or Myc after 250 nmol/L of GV for 24 hours. (g, h) Primary spheres

TAT3Y705E, or Myc. Scale bar ¼ 100 mm. *P < 0.05 versus control. (i) Proposed

3-phosphate dehydrogenase; GV, gentian violet; Rel, relative; STAT3, signal
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insights into the potential use of GV in combination with
other drugs targeting signaling pathways involved in mela-
noma progression.

MATERIALS AND METHODS
Human melanoma samples and cell cultures

Commercial melanoma cell lines used in this study were A375 and

SK-MEL-28 (a gift from Laura Poliseno, Istituto Toscano Tumori)

(Marranci et al., 2015). Human melanoma samples were obtained

after approved protocol by the institutional review board of the

hospital, and written informed consent of patients was obtained

following the Helsinki protocol. Cells were periodically screened for

contamination with Mycoplasma species by PCR. For cell viability

assay, 15,000 cells/well were plated in 12-well plates and treated

with GV at indicated concentrations for 48 hours in 1% fetal bovine

serum.

Primary sphere formation and self-renewal assay

For melanoma sphere cultures, cells were seeded in human

embryonic stem cell medium supplemented with 4ng/ml basic

fibroblast growth factor, as reported (Santini et al., 2012). For

primary sphere formation assay, melanoma cells were seeded in

12-well plates at 1cell/ml dilution, and spheres were counted after

72 hours. For self-renewal assay, primary melanoma spheres were

dissociated into single cells and plated at 1cell/ml dilution in 12-well

plates. After 1 week secondary spheres were counted (Santini et al.,

2014).

Aldefluor assay and flow cytometry analysis

Aldefluor assay was performed using the Aldefluor kit (Stemcell

Technologies, Vancouver, Canada) as previously reported (Santini

et al., 2012). For cell cycle analysis, melanoma cells were resus-

pended in 50mg/ml propidium iodide, 0.1% Triton X-100, and 0.1%

sodium citrate 48 hours after GV treatment. Data were collected on

BD Accuri C6 software (BD Biosciences, Franklin Lakes, NJ) and

analyzed using ModFit LT software (Verity Software House,

Topsham, ME). Apoptosis was measured after 48 (adherent cells) or

72 (spheres) hours of GV treatment using annexin V-phycoerythrin/

7-AAD apoptosis kit (BD Biosciences) according to the manufac-

turer’s instructions. The number of apoptotic cells was detected and

analyzed using BD Accuri C6 software.

Plasmids, cloning, mutagenesis, and lentiviral vectors

See Supplementary Materials online for details.

Luciferase reporter assays

Luciferase reporters were used in combination with Renilla

luciferase pRL-TK reporter vector (Promega, Madison, WI) to

normalize luciferase activities; pGL3Basic vector (Promega) was

used to equal DNA amounts. Luminescence was measured using the

Dual-Glo Luciferase Assay System (Promega) and the GloMax 20/20

Luminometer (Promega).

Western blot analysis

Western blot was performed as already described (Pandolfi et al.,

2015). See Supplementary Materials for antibodies.

Chromatin immunoprecipitation

Chromatin immunoprecipitation was performed as already

described (Pandolfi et al., 2015). Sonicated cell lysates were incu-

bated overnight at 4 �C with 20 ml of protein G magnetic dynabeads

(Invitrogen, Carlsbad, CA) coupled to 3 mg of anti-STAT3 antibody

(H-190) (Santa Cruz Biotechnology, Santa Cruz, CA) or IgG control.

DNAwas purified, and quantitative real-time PCR was carried out at
Journal of Investigative Dermatology (2016), Volume 136
60 �C using FastStart SYBR Green Master (Roche Diagnostics, Basel,

Switzerland). Primers are listed in Supplementary Table S1 online.

Statistical analysis

Data represent mean � standard error of the mean values calculated

on at least three independent experiments. P-values were calculated

using one-way analysis of variance and Bonferroni correction when

more than two samples were analyzed and Student t test when two

samples were compared. A two-tailed value of P < 0.05 was

considered statistically significant.
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