99 research outputs found

    Processes of removing zinc from water using zero-valent iron

    Get PDF
    Zero-valent iron has received considerable attention for its potential application in the removal of heavy metals from water. This paper considers the possibility of removal of zinc ions from water by causing precipitates to form on the surface of iron. The chemical states and the atomic concentrations of solids which have formed on the surface of zero-valent iron as well as the type of the deposited polycrystalline substances have been analyzed with the use of X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), respectively. The BET surface area, the pH at point of zero charge (pHPZC), the ORP of the solutions, and the pH and chemical concentrations in the solutions have also been measured. Furthermore, the paper also considers the possibility of release of zinc from the precipitates to demineralised water in changing physicochemical and chemical conditions. In a wide range of pH values, Zn x Fe3 − x O4 (where x ≤ 1) was the main compound resulting from the removal of zinc in ionic form from water. In neutral and alkaline conditions, the adsorption occurred as an additional process

    Physicochemical analysis of Bi2Te3 - (Fe, Eu) - Bi2Te3 junctions grown by molecular beam epitaxy method

    Get PDF
    Topological insulators (TI) are a class of materials gaining in importance due to their unique spin/electronic properties, which may allow for the generation of quasiparticles and electronic states which are not accessible in classical condensed-matter systems. Not surprisingly, TI are considered as promising materials for multiple applications in next generation electronic or spintronic devices, as well as for applications in energy conversion, such as thermo-electrics. In this study, we examined the practical challenges associated with the formation of a well-defined junction between a model 3D topological insulator, Bi2Te3, and a metal, Fe or Eu, from which spin injection could potentially be realized. The properties of multilayer systems grown by molecular beam epitaxy (MBE), with Fe or Eu thin films sandwiched between two Bi2Te3 layers, were studied in-situ using electron diffraction and photoelectron spectroscopy. Their magnetic properties were measured using a SQUID magnetometer, while the in-depth chemical structure was assessed using secondary ion mass spectroscopy. An examination of impact of Bi2Te3 structure on chemical stability of the junction area has been realized. For Fe, we found that despite room temperature growth, a reaction between the Fe film and Bi2Te3 takes place, leading to the formation of FeTe and also the precipitation of metallic Bi. For the Eu tri-layer, a reaction also occurs, but the Te chemical state remains intact

    Study of interfaces chemistry in type-II GaSb/InAs superlattice structures

    Get PDF
    There is a considerable interest in type-II GaSb/InAs superlattice system due to several modern applications including infrared detectors. In these studies X-ray Photoelectron Spectroscopy (XPS) and Spectroscopic Ellipsometry (SE) have been used to extensive characterization of the surface and interface of GaSb/InAs superlattice. Application of XPS and SE techniques provide precise information from topmost layers of structure and allow excluding presence of GaAs-type interfaces in GaSb/InAs superlattices. Simultaneously, these results indicate that InSb-type or GaInSb-type interfaces have been detected in the structures studied

    Photofunctionalization of titanium: an alternative explanation of its chemical-physical mechanism

    Get PDF
    Objectives To demonstrate that titanium implant surfaces as little as 4 weeks from production are contaminated by atmospheric hydrocarbons. This phenomenon, also known as biological ageing can be reversed by UVC irradiation technically known as photofunctionalization. To propose a new model from our experimental evidence to explain how the changes in chemical structure of the surface will affect the adsorption of amino acids on the titanium surface enhancing osteointegration. Methods In our study XPS and AES were used to analyze the effects of UVC irradiation (photofunctionalization) in reversing biological ageing of titanium. SEM was used to analyze any possible effects on the topography of the surface. Results UVC irradiation was able to reverse biological ageing of titanium by greatly reducing the amount of carbon contamination present on the implant surface by up to 4 times, while the topography of the surface was not affected. UVC photon energy reduces surface H2 O and increases TiOH with many -OH groups being produced. These groups explain the superhydrophilic effect from photofunctionalization when these groups come into contact with water. Significance Photofunctionalization has proven to be a valid method to reduce the amount of hydrocarbon contamination on titanium dental implants and improve biological results. The chemisorption mechanisms of amino acids, in our study, are dictated by the chemical structure and electric state present on the surface, but only in the presence of an also favourable geometrical composition at the atomical level

    Inhomogeneity and Segregation Effect in the Surface Layer of Fe-Doped SrTiO3 Single Crystals

    Get PDF
    The e ect of Fe doping on SrTiO3 single crystals was investigated in terms of crystal and electronic structure over a wide temperature range in both oxidizing and reducing conditions. The electrical properties were thoroughly studied with a special focus on the resistive switching phenomenon. Contrary to the undoped SrTiO3 crystals, where isolated filaments are responsible for resistive switching, the iron-doped crystals showed stripe-like conducting regions at the nanoscale. The results showed a non-uniform Fe distribution of as-received crystals and the formation of new phases in the surface layer of reduced/oxidized samples. The oxidation procedure led to a separation of Ti(Fe) and Sr, while the reduction resulted in the tendency of Fe to agglomerate and migrate away from the surface as seen from the time of flight mass spectroscopy measurements. Moreover, a clear presence of Fe-rich nano-filament in the reduced sample was found

    Chemical Looping Combustion Related Processes Using Solid Oxygen Carriers Oxidized in CO2 Atmosphere

    Get PDF
    Chemical-looping combustion (CLC) is an attractive process in CO2 capture, especially when solid oxygen carriers are used in it. The main requirements for oxygen-transporting materials include appropriate oxidation (in air) and reduction (in the presence of fuel) ability. In the paper a conceptual proposition for CLC-related processes with the application of solid oxygen carriers oxidized in both air and CO2 atmosphere has been presented. The possibility of the “looping” process on the same carriers using both CO2 and air atmosphere as an oxidizing agent allows us to enrich the concept of CLC and related processes by proposing a cyclic recirculation of the produced CO2 back to the installation. The oxidizing of solid oxygen carrier in a CO2 atmosphere is accompanied by CO emission from the plant. This toxic gas could be transformed into a useful product in any chemical process. It is possible to combine the looping processes with manufacturing of any appropriate morphological form of carbon in the cyclic CO disproportionation process. The combined process could lead to a lower CO2 emissions to the environment. SrTiO3 doped by Cr (STO:Cr) and a mixture of TiO2- and Ni-based compounds (TiO2-Ni) were investigated as oxygen transporting materials. The experiment methodology based on thermogravimetric, diffraction and spectroscopic studies was shown. Thermogravimetric (TGA) and Powder Diffraction (XRD) measurements were provided in-situ during a few cycles in a reducing (Ar+3 % H2) and oxidizing environment. Moreover, the STO:Cr powders were characterized ex-situ by the X-ray Photoelectron Spectroscopy (XPS) method. It was found that in tested conditions the cyclic process of the investigated powders’ oxidation and reduction is possible. Satisfactory results considering the oxygen transport capacity was obtained for the TiO2-Ni sample

    Spectroscopic Studies on Organic Matter from Triassic Reptile Bones, Upper Silesia

    Get PDF
    Fossil biomolecules from an endogenous source were previously identified in Cretaceous to Pleistocene fossilized bones, the evidence coming from molecular analyses. These findings, however, were called into question and an alternative hypothesis of the invasion of the bone by bacterial biofilm was proposed. Herewith we report a new finding of morphologically preserved blood-vessel-like structures enclosing organic molecules preserved in ironoxide-mineralized vessel walls from the cortical region of nothosaurid and tanystropheid (aquatic and terrestrial diapsid reptiles) bones. These findings are from the Early/Middle Triassic boundary (Upper Roetian/Lowermost Muschelkalk) strata of Upper Silesia, Poland. Multiple spectroscopic analyses (FTIR, To F-SIMS, and XPS) of the extracted "blood vessels" showed the presence of organic compounds, including fragments of various amino acids such as hydroxyproline and hydroxylysine as well as amides, that may suggest the presence of collagen protein residues. Because these amino acids are absent from most proteins other than collagen, we infer that the proteinaceous molecules may originate from endogenous collagen. The preservation of molecular signals of proteins within the "blood vessels" was most likely made possible through the process of early diagenetic iron oxide mineralization. This discovery provides the oldest evidence of in situ preservation of complex organic molecules in vertebrate remains in a marine environment

    Surface passivation of (100) GaSb using self-assembled monolayers of long-chain octadecanethiol

    Get PDF
    The passivation of (100) GaSb surface was investigated by means of the long-chain octadecanethiol (ODT) self-assembled monolayer (SAM). The properties of ODT SAM on (100) GaSb were characterized by the atomic force microscopy using Kelvin probe force microscopy mode and X-ray photoelectron spectroscopy. The chemical treatment of 10mM ODT-C2H5OH has been applied to the passivation of a type-II superlattice InAs/GaSb photodetector. The electrical measurements indicate that the current density was reduced by one order of magnitude as compared to an unpassivated photodetector

    Quantum size effect on charges and phonons ultrafast dynamics in atomically controlled nanolayers of topological insulators Bi2Te3

    Get PDF
    This work was supported by the French Ministry of Education and Research, the CNRS, Region Pays de la Loire (CPER Femtosecond Spectroscopy equipment program) and the LIA-CNRS (Laboratoire International Associé) IM-LED. The partial financial support from National Science Center under project 2016/21/B/ST5/02531 is acknowledged. R. Rapacz was supported by FORSZT PhD fellowship.Heralded as one of the key elements for next generation spintronics devices, topological insulators (TIs) are now step by step envisioned as nanodevices like charge-to-spin current conversion or as Dirac fermions based nanometer Schottky diode for example. However, reduced to few nanometers, TIs layers exhibit a profound modification of the electronic structure and the consequence of this quantum size effect on the fundamental carriers and phonons ultrafast dynamics has been poorly investigated so far. Here, thanks to a complete study of a set of high quality molecular beam epitaxy grown nanolayers, we report the existence of a critical thickness of around ~6 nm, below which a spectacular reduction of the carrier relaxation time by a factor of ten is found in comparison to bulk Bi2 Te3 In addition, we also evidence an A1g optical phonon mode softening together with the appearance of a thickness dependence of the photoinduced coherent acoustic phonons signals. This drastic evolution of the carriers and phonons dynamics might be due an important electron-phonon coupling evolution due to the quantum confinement. These properties have to be taken into account for future TIs-based spintronic devices.Centre National de la Recherche Scientifiqu

    Coherent acoustic phonons generated by ultrashort terahertz pulses in nanofilms of metals and topological insulators

    Get PDF
    We report the generation of coherent acoustic phonons in materials with terahertz ultrashort pulses. This is demonstrated in metals and topological insulators by exciting an acoustic eigenmode in nanometric-sized thin films. The efficiency of the coupling is quadratic in the terahertz electric field strength within the range of investigation. Owing to a quantitative comparison between terahertz and near-infrared ultrashort pulse excitations, we show that the process of acoustic phonon generation by terahertz radiation is mainly driven by thermoelastic stress. While for the near-infrared light excitation the lattice temperature increase comes from a rapid energy transfer from the hot carriers to the phonon bath during carrier intraband relaxation, the thermoelastic stress induced by the terahertz electric field is linked to the scattering of the accelerated electrons leading to an ultrafast Joule effect
    corecore