55 research outputs found

    NO-degradation by alfalfa class 1 hemoglobin (Mhb1): a possible link to PR-1a gene expression in Mhb1-overproducing tobacco plants

    Get PDF
    AbstractTobacco plants overproducing alfalfa class 1 hemoglobin (HOT plants) have been shown to have reduced necrotic symptom development. Here, we show that this altered pathogenic response is linked to a significant increase in the nitric oxide (NO)-affected pathogenesis-related (PR-1a) transcript accumulation in the transgenic plants. Homogenates of HOT transgenic seedlings were also found to have higher NO-scavenging activity than non-transformed ones. The NO-scavenging properties of recombinant alfalfa class1 hemoglobin have been examined. Recombinant Mhb1 (rMhb1) was produced in bacteria and purified using polyethylene glycol (10–25%) fractionation, chromatography on DEAE–Sephacel, and Phenyl Superose columns. After the final purification step, the obtained preparations were near homogeneous and had a molecular weight of 44 kDa determined by size-exclusion chromatography and 23 kDa by SDS–PAGE, indicating that rMhb1 is a dimer. The protein participated in NO-degradation activity with NAD(P)H as a cofactor. After ion-exchange columns, addition of FAD was necessary for exhibiting maximal NO-degradation activity. The NAD(P)H-dependent NO-scavenging activity of rMhb1, which is similar to that of barley hemoglobin, supports a conclusion that both monocot and dicot class 1 hemoglobins can affect cellular NO levels by scavenging NO formed during hypoxia, pathogen attack and other stresses

    Overexpression of phytochelatin synthase in tobacco: distinctive effects of AtPCS1 and CePCS genes on plant response to cadmium

    Get PDF
    Phytochelatins, heavy-metal-binding polypeptides, are synthesized by phytochelatin synthase (PCS) (EC 2.3.2.15). Previous studies on plants overexpressing PCS genes yielded contrasting phenotypes, ranging from enhanced cadmium tolerance and accumulation to cadmium hypersensitivity. This paper compares the effects of overexpression of AtPCS1 and CePCS in tobacco (Nicotiana tabacum var. Xanthi), and demonstrates how the introduction of single homologous genes affects to a different extent cellular metabolic pathways leading to the opposite of the desired effect. In contrast to WT and CePCS transformants, plants overexpressing AtPCS1 were Cd-hypersensitive although there was no substantial difference in cadmium accumulation between studied lines. Plants exposed to cadmium (5 and 25 μM CdCl2) differed, however, in the concentration of non-protein thiols (NPT). In addition, PCS activity in AtPCS1 transformants was around 5-fold higher than in CePCS and WT plants. AtPCS1 expressing plants displayed a dramatic accumulation of γ-glutamylcysteine and concomitant strong depletion of glutathione. By contrast, in CePCS transformants, a smaller reduction of the level of glutathione was noticed, and a less pronounced change in γ-glutamylcysteine concentration. There was only a moderate and temporary increase in phytochelatin levels due to AtPCS1 and CePCS expression. Marked changes in NPT composition due to AtPCS1 expression led to moderately decreased Cd-detoxification capacity reflected by lower SH:Cd ratios, and to higher oxidative stress (assessed by DAB staining), which possibly explains the increase in Cd-sensitivity. The results indicate that contrasting responses to cadmium of plants overexpressing PCS genes might result from species-dependent differences in the activity of phytochelatin synthase produced by the transgenes

    Extreme resistance to Potato virus Y in potato carrying the Rysto gene is mediated by a TIR-NLR immune receptor

    Get PDF
    Potato virus Y (PVY) is a major potato (Solanum tuberosum L.) pathogen that causes severe annual crop losses worth billions of dollars worldwide. PVY is transmitted by aphids, and successful control of virus transmission requires the extensive use of environmentally damaging insecticides to reduce vector populations. Rysto , from the wild relative S. stoloniferum, confers extreme resistance (ER) to PVY and related viruses and is a valuable trait that is widely employed in potato resistance breeding programmes. Rysto was previously mapped to a region of potato chromosome XII, but the specific gene has not been identified to date. In this study, we isolated Rysto using resistance gene enrichment sequencing (RenSeq) and PacBio SMRT (Pacific Biosciences single-molecule real-time sequencing). Rysto was found to encode a nucleotide-binding leucine-rich repeat (NLR) protein with an N-terminal TIR domain and was sufficient for PVY perception and ER in transgenic potato plants. Rysto -dependent extreme resistance was temperature-independent and requires EDS1 and NRG1 proteins. Rysto may prove valuable for creating PVY-resistant cultivars of potato and other Solanaceae crops

    Two Strategies of Pseudomonas syringae to Avoid Recognition of the HopQ1 Effector in Nicotiana Species

    Get PDF
    Pseudomonas syringae employs a battery of type three secretion effectors to subvert plant immune responses. In turn, plants have developed receptors that recognize some of the bacterial effectors. Two strain-specific HopQ1 effector variants (for Hrp outer protein Q) from the pathovars phaseolicola 1448A (Pph) and tomato DC3000 (Pto) showed considerable differences in their ability to evoke disease symptoms in Nicotiana benthamiana. Surprisingly, the variants differ by only six amino acids located mostly in the N-terminal disordered region of HopQ1. We found that the presence of serine 87 and leucine 91 renders PtoHopQ1 susceptible to N-terminal processing by plant proteases. Substitutions at these two positions did not strongly affect PtoHopQ1 virulence properties in a susceptible host but they reduced bacterial growth and accelerated onset of cell death in a resistant host, suggesting that N-terminal mutations rendered PtoHopQ1 susceptible to processing in planta and, thus, represent a mechanism of recognition avoidance. Furthermore, we found that co-expression of HopR1, another effector encoded within the same gene cluster masks HopQ1 recognition in a strain-dependent manner. Together, these data suggest that HopQ1 is under high host-pathogen co-evolutionary selection pressure and P. syringae may have evolved differential effector processing or masking as two independent strategies to evade HopQ1 recognition, thus revealing another level of complexity in plant – microbe interactions

    Familial hypercholesterolaemia in children and adolescents from 48 countries: a cross-sectional study

    Get PDF
    Background: Approximately 450 000 children are born with familial hypercholesterolaemia worldwide every year, yet only 2·1% of adults with familial hypercholesterolaemia were diagnosed before age 18 years via current diagnostic approaches, which are derived from observations in adults. We aimed to characterise children and adolescents with heterozygous familial hypercholesterolaemia (HeFH) and understand current approaches to the identification and management of familial hypercholesterolaemia to inform future public health strategies. Methods: For this cross-sectional study, we assessed children and adolescents younger than 18 years with a clinical or genetic diagnosis of HeFH at the time of entry into the Familial Hypercholesterolaemia Studies Collaboration (FHSC) registry between Oct 1, 2015, and Jan 31, 2021. Data in the registry were collected from 55 regional or national registries in 48 countries. Diagnoses relying on self-reported history of familial hypercholesterolaemia and suspected secondary hypercholesterolaemia were excluded from the registry; people with untreated LDL cholesterol (LDL-C) of at least 13·0 mmol/L were excluded from this study. Data were assessed overall and by WHO region, World Bank country income status, age, diagnostic criteria, and index-case status. The main outcome of this study was to assess current identification and management of children and adolescents with familial hypercholesterolaemia. Findings: Of 63 093 individuals in the FHSC registry, 11 848 (18·8%) were children or adolescents younger than 18 years with HeFH and were included in this study; 5756 (50·2%) of 11 476 included individuals were female and 5720 (49·8%) were male. Sex data were missing for 372 (3·1%) of 11 848 individuals. Median age at registry entry was 9·6 years (IQR 5·8-13·2). 10 099 (89·9%) of 11 235 included individuals had a final genetically confirmed diagnosis of familial hypercholesterolaemia and 1136 (10·1%) had a clinical diagnosis. Genetically confirmed diagnosis data or clinical diagnosis data were missing for 613 (5·2%) of 11 848 individuals. Genetic diagnosis was more common in children and adolescents from high-income countries (9427 [92·4%] of 10 202) than in children and adolescents from non-high-income countries (199 [48·0%] of 415). 3414 (31·6%) of 10 804 children or adolescents were index cases. Familial-hypercholesterolaemia-related physical signs, cardiovascular risk factors, and cardiovascular disease were uncommon, but were more common in non-high-income countries. 7557 (72·4%) of 10 428 included children or adolescents were not taking lipid-lowering medication (LLM) and had a median LDL-C of 5·00 mmol/L (IQR 4·05-6·08). Compared with genetic diagnosis, the use of unadapted clinical criteria intended for use in adults and reliant on more extreme phenotypes could result in 50-75% of children and adolescents with familial hypercholesterolaemia not being identified. Interpretation: Clinical characteristics observed in adults with familial hypercholesterolaemia are uncommon in children and adolescents with familial hypercholesterolaemia, hence detection in this age group relies on measurement of LDL-C and genetic confirmation. Where genetic testing is unavailable, increased availability and use of LDL-C measurements in the first few years of life could help reduce the current gap between prevalence and detection, enabling increased use of combination LLM to reach recommended LDL-C targets early in life

    Effect of Medicago sativa Mhb1gene expression on defense response of Arabidopsis thaliana plants

    Get PDF
    Besides the previously described nitric oxide-detoxification activity we identified new features of class-1 non-symbiotic hemoglobin from Medicago sativa (Mhb1). Under in vitro conditions, using peroxidase in-gel activity assay, the Mhb1 protein was shown to possess also peroxidase-like activity. Due to this activity, in the presence of nitrite and hydrogen peroxide, the protein can mediate autonitration and nitration of other proteins at tyrosine residues, as revealed by tandem mass spectrometry and immune assay approaches. Mhb1 through its multifunctional activities can affect different components of signal transduction cascades operating during plant response to infections. This influence is manifested by Mhb1-mediated selective up-regulation of expression of certain pathogen inducible genes in Pseudomonas syringae infected Arabidopsis thaliana plants which overproduce Mhb1, as revealed by reverse transcription–quantitative real-time PCR analysis. Changes in expression level of these genes can influence such processes as synthesis of secondary metabolites, protein degradation and biosynthesis of ethylene. They can also result in alteration of pathogen-induced defense response of Mhb1 transgenic plants

    Structures of an active-site mutant of a plant 1,3-beta-glucanase in complex with oligosaccharide products of hydrolysis

    Get PDF
    Plant endo-1,3-beta-glucanases are involved in important physiological processes such as defence mechanisms, cell division and flowering. They hydrolyze (13)-beta-glucans, with very limited activity towards mixed (13,14)-beta-glucans and branched (13,16)-beta-glucans. Here, crystal structures of the potato (Solanum tuberosum) endo-1,3-beta-glucanase GLUB20-2 with the nucleophilic Glu259 residue substituted by alanine (E259A) are reported. Despite this active-site mutation, the protein retained residual endoglucanase activity and when incubated in the crystallization buffer with a linear hexameric substrate derived from (13)-beta-glucan (laminarahexose) cleaved it in two different ways, generating trisaccharides and tetrasaccharides, as confirmed by mass spectrometry. The trisaccharide (laminaratriose) shows higher binding affinity and was found to fully occupy the -1, -2 and -3 sites of the active-site cleft, even at a low molar excess of the substrate. At elevated substrate concentration the tetrasaccharide molecule (laminaratetrose) also occupies the active site, spanning the opposite sites +1, +2, +3 and +4 of the cleft. These are the first crystal structures of a plant glycoside hydrolase family 17 (GH17) member to reveal the protein–saccharide interactions and were determined at resolutions of 1.68 and 1.55 A˚ ,respectively. The geometry of the active-site cleft clearly precludes any (14)-beta-glucan topology at the subsites from -3 to +4 and could possibly accommodate beta-1,6-branching only at subsites +1 and +2. The glucose units at subsites -1 and -2 interact with highly conserved protein residues. In contrast, subsites -3, +3 and +4 are variable, suggesting that the mode of glucose binding at these sites may vary between different plant endo-1,3-beta-glucanases. Low substrate affinity is observed at subsites +1 and +2, as manifested by disorder of the glycosyl units there

    Two high-resolution crystal structures of potato 1,3-β-glucanase reveal subdomain flexibility with implications for substrate binding

    Get PDF
    Endo-1,3-β-glucanases are widely distributed among bacteria, fungi and higher plants. They are responsible for the hydrolysis of the glycosidic bond in specific polysaccharides with tracts of unsubsituted -1,3-linked glucosyl residues. The plant enzymes belong to the glycoside hydrolase family 17 (GH17) and are also members of class 2 of pathogenesis-related (PR) proteins. For endo-1,3-β-glucanase from Solanum tuberosum (potato, cultivar Désirée), X-ray diffraction data were collected to 1.40 and 1.26 Å resolution for two crystals which, despite a similar packing framework, represent two separate crystal forms. In particular, they differ in the Matthews coefficient and are consequently referred to as higher density (HD, 1.40 Å) and lower density (LD, 1.26 Å) forms. The general fold of the protein resembles that of other known plant endo-1,3--glucanases and is defined by a (β/α)8 barrel with an additional subdomain built around the C-terminal half of the barrel. The structures reveal high flexibility of the subdomain, which forms part of the catalytic cleft. Comparison with other GH17 endo-1,3-beta-glucanase structures reveals differences in the arrangement of the secondary structure elements in this region, which can be correlated with sequence variability and may suggest distinct substrate binding patterns. The crystal structures reveal an unusual packing mode, clearly visible in the LD structure, caused by the presence of the C-terminal His6-tag, which extends from the compact fold of the enzyme molecule and docks in the catalytic cleft of a neighboring molecule. In this way, an infinite chain of His-tag-linked protein molecules is formed along the c direction

    Związki naturalne w farmacji i medycynie. Kwas salicylowy i fenolokwasy. Natural products in pharmacy and medicine. Salicylic acid and related phenolic acids.

    Get PDF
    Kwas salicylowy (KS) jest najprostszym przedstawicielem grupy metabolitów wtórnych roślin wyższych, zwanych fenolokwasami, które odgrywają ważne role biologiczne zarówno w fizjologii roślin, jak i w ochronie zdrowia ludzkiego. W artykule przedstawiono krótki rys historyczny badań i zastosowań KS, pozyskiwanego ze źródeł naturalnych i przemysłowych, oraz wiadomości dotyczące występowania jego analogów strukturalnych w roślinach. Opisano rolę KS jako fitohormonu i induktora odpowiedzi na stres u roślin oraz jako inhibitora wytwarzania mediatorów stanu zapalnego u ludzi. Salicylic acid (SA) is the simplest example of molecule belonging to the group of plant secondary metabolites, classified as phenolic acids. These compounds are of considerable importance not only for well being of the host organisms but also have advantageous influence on human physiology. Short account of natural and synthetic SA studies, as well as its structural analogs, is presented. The role of SA in plant local and systemic pathogen resistance phenomena is described, and its significance for anti-inflammatory therapies in humans are discussed
    corecore