35 research outputs found

    Ten-year experience of more than 35,000 orofacial clefts in Africa

    Full text link
    Abstract Background Surgical correction of orofacial clefts greatly mitigates negative outcomes. However, access to reconstructive surgery is limited in developing countries. The present study reviews epidemiological data from a single charitable organization, Smile Train, with a database of surgical cases from 33 African countries from 2001–2011. Methods Demographic and clinical patient data were collected from questionnaires completed by the participating surgeons. These data were recorded in Excel, analyzed using SPSS and compared with previously reported data. Results Questionnaires were completed for 36,384 patients by 389 African surgeons. The distribution of clefts was: 34.44% clefts of the lip (CL), 58.87% clefts of the lip and palate (CLP), and 6.69% clefts of the palate only (CP). The male to female ratio was 1.46:1, and the unilateral: bilateral ratio 2.93:1, with left-sided predominance 1.69:1. Associated anomalies were found in 4.18% of patients. The most frequent surgeries included primary lip/nose repairs, unilateral (68.36%) and bilateral (11.84%). There was seasonal variation in the frequency of oral cleft births with the highest in January and lowest by December. The average age at surgery was 9.34 years and increased in countries with lower gross domestic products. The average hospital stay was 4.5 days. The reported complication rate was 1.92%. Conclusions With the exception of cleft palates, results follow trends of worldwide epidemiologic reports of 25% CL, 50% CLP, and 25% CP, 2:1 unilateral:bilateral and left:right ratios, and male predominance. Fewer than expected patients, especially females, presented with isolated cleft palates, suggesting that limitations in economic resources and cultural aesthetics of the obvious lip deformity may outweigh functional concerns and access to treatment for females. A fewer than expected associated anomalies suggests either true ethnic variation, or that more severely-affected patients are not presenting for treatment. The epidemiology of orofacial clefting in Africa has been difficult to assess due to the diversity of the continent and the considerable variation among study designs. The large sample size of the data collected provides a basis for further study of the epidemiology of orofacial clefting in Africa.http://deepblue.lib.umich.edu/bitstream/2027.42/110688/1/12887_2015_Article_328.pd

    Evidence of gene-environment interaction for two genes on chromosome 4 and environmental tobacco smoke in controlling the risk of nonsyndromic cleft palate

    Get PDF
    Nonsyndromic cleft palate (CP) is one of the most common human birth defects and both genetic and environmental risk factors contribute to its etiology. We conducted a genome-wide association study (GWAS) using 550 CP case-parent trios ascertained in an international consortium. Stratified analysis among trios with different ancestries was performed to test for GxE interactions with common maternal exposures using conditional logistic regression models. While no single nucleotide polymorphism (SNP) achieved genome-wide significance when considered alone, markers in SLC2A9 and the neighboring WDR1 on chromosome 4p16.1 gave suggestive evidence of gene-environment interaction with environmental tobacco smoke (ETS) among 259 Asian trios when the models included a term for GxE interaction. Multiple SNPs in these two genes were associated with increased risk of nonsyndromic CP if the mother was exposed to ETS during the peri-conceptual period (3 months prior to conception through the first trimester). When maternal ETS was considered, fifteen of 135 SNPs mapping to SLC2A9 and 9 of 59 SNPs in WDR1 gave P values approaching genome-wide significance (10-6<P<10-4) in a test for GxETS interaction. SNPs rs3733585 and rs12508991 in SLC2A9 yielded P = 2.26×10-7 in a test for GxETS interaction. SNPs rs6820756 and rs7699512 in WDR1 also yielded P = 1.79×10-7 and P = 1.98×10-7 in a 1 df test for GxE interaction. Although further replication studies are critical to confirming these findings, these results illustrate how genetic associations for nonsyndromic CP can be missed if potential GxE interaction is not taken into account, and this study suggest SLC2A9 and WDR1 should be considered as candidate genes for CP. © 2014 Wu et al

    The Paternal-Age Effect in Apert Syndrome Is Due, in Part, to the Increased Frequency of Mutations in Sperm

    Get PDF
    A paternal-age effect and the exclusive paternal origin of mutations have been reported in Apert syndrome (AS). As the incidence of sporadic AS births increases exponentially with paternal age, we hypothesized that the frequency of AS mutations in sperm would also increase. To determine the frequency of two common FGFR2 mutations in AS, we developed allele-specific peptide nucleic acid–PCR assays. Analyzing sperm DNA from 148 men, age 21–80 years, we showed that the number of sperm with mutations increased in the oldest age groups among men who did not have a child with AS. These older men were also more likely to have both mutations in their sperm. However, this age-related increase in mutation frequency was not sufficient to explain the AS-birth frequency. In contrast, the mutation frequency observed in men who were younger and had children with AS was significantly greater. In addition, our data suggest selection for sperm with specific mutations. Therefore, contributing factors to the paternal-age effect may include selection and a higher number of mutant sperm in a subset of men ascertained because they had a child with AS. No age-related increase in the frequency of these mutations was observed in leukocytes. Selection and/or quality-control mechanisms, including DNA repair and apoptosis, may contribute to the cell-type differences in mutation frequency

    The Paternal-Age Effect in Apert Syndrome Is Due, in Part, to the Increased Frequency of Mutations in Sperm

    No full text
    t of men ascertained because they had a child with AS. No age-related increase in the frequency of these mutations was observed in leukocytes. Selection and/or quality-control mechanisms, including DNA repair and apoptosis, may contribute to the cell-type differences in mutation frequency. Much has been written about the &quot;mutagenic male&quot; (Hurst and Ellegren 2002) and the higher male-to-female mutation rate in many genetic disorders (Vogel and Rathenberg 1975; Crow 2000). Conventional wisdom says that the greater number of germ-cell divisions in males compared with females contributes to the higher mutation frequency in males (Penrose 1955), which manifests as an increased incidence with paternal age of de novo cases of disorders, as well as paternally derived mutations (Moloney et al. 1996; Shuffenecker et al. 1997; Wilkin et al. 1998; Glaser et al. 2000). However, the linear increase with age in the number of divisions does not fully explain the exponential increase with paternal ag

    Connexin 43 (GJA1) Mutations Cause the Pleiotropic Phenotype of Oculodentodigital Dysplasia

    Get PDF
    Gap junctions are assemblies of intercellular channels that regulate a variety of physiologic and developmental processes through the exchange of small ions and signaling molecules. These channels consist of connexin family proteins that allow for diversity of channel composition and conductance properties. The human connexin 43 gene, or GJA1, is located at human chromosome 6q22-q23 within the candidate region for the oculodentodigital dysplasia locus. This autosomal dominant syndrome presents with craniofacial (ocular, nasal, and dental) and limb dysmorphisms, spastic paraplegia, and neurodegeneration. Syndactyly type III and conductive deafness can occur in some cases, and cardiac abnormalities are observed in rare instances. We found mutations in the GJA1 gene in all 17 families with oculodentodigital dysplasia that we screened. Sixteen different missense mutations and one codon duplication were detected. These mutations may cause misassembly of channels or alter channel conduction properties. Expression patterns and phenotypic features of gja1 animal mutants, reported elsewhere, are compatible with the pleiotropic clinical presentation of oculodentodigital dysplasia

    Development of a microsatellite genetic map spanning 5q31–q33 and subsequent placement of the LGMD1A locus between D5S178 and IL9

    No full text
    Limb-girdle muscular dystrophy (LGMD) is a genetically and clinically heterogeneous group of disorders. We previously localized an autosomal dominant form of the disorder (LGMD1A) to chromosome 5q22–31 by linkage analysis in a single large pedigree. After developing a microsatellite genetic map incorporating six loci in q31–33 of chromosome 5 and spanning 35 cM, we have refined the original localization. Using multipoint analysis, LGMD1A is localised to a 7 cM region between the markers IL9 and D5S178 with odds > 1000 : 1

    Novel Molecular Pathways Elicited by Mutant FGFR2 May Account for Brain Abnormalities in Apert Syndrome

    Get PDF
    <div><p>Apert syndrome (AS), the most severe form craniosynostosis, is characterized by premature fusion of coronal sutures. Approximately 70% of AS patients carry S252W gain-of-function mutation in <i>FGFR2</i>. Besides the cranial phenotype, brain dysmorphologies are present and are not seen in other <i>FGFR2</i>-asociated craniosynostosis, such as Crouzon syndrome (CS). Here, we hypothesized that S252W mutation leads not only to overstimulation of FGFR2 downstream pathway, but likewise induces novel pathological signaling. First, we profiled global gene expression of wild-type and S252W periosteal fibroblasts stimulated with FGF2 to activate FGFR2. The great majority (92%) of the differentially expressed genes (DEGs) were divergent between each group of cell populations and they were regulated by different transcription factors. We than compared gene expression profiles between AS and CS cell populations and did not observe correlations. Therefore, we show for the first time that S252W mutation in FGFR2 causes a unique cell response to FGF2 stimulation. Since our gene expression results suggested that novel signaling elicited by mutant FGFR2 might be associated with central nervous system (CNS) development and maintenance, we next investigated if DEGs found in AS cells were also altered in the CNS of an AS mouse model. Strikingly, we validated <i>Strc</i> (stereocilin) in newborn Fgfr2<sup>S252W/+</sup> mouse brain. Moreover, immunostaining experiments suggest a role for endothelial cells and cerebral vasculature in the establishment of characteristic CNS dysmorphologies in AS that has not been proposed by previous literature. Our approach thus led to the identification of new target genes directly or indirectly associated with FGFR2 which are contributing to the pathophysiology of AS.</p> </div

    Human periosteal fibroblast experiments.

    No full text
    <p>(A) Validation of differentially expressed genes showing the correlation between fold-changes obtained from the Affymetrix microarray experiment and the fold-change values for each gene in each cell line. The correlations between the values of microarray and qRT-PCR fold-changes were calculated through Spearman correlation test. (B) Immunofluorescence staining of TCF19 (green) in two lineages of S252W fibroblasts not included in microarray experiment after 24 h treatment with PBS (control) or FGF2. Blue staining refers to nuclei (DAPI), magnification: 10×; scale bar = 500 µm. (C) Fold-change of the mRNA levels of <i>BAT3</i>, <i>BDP1</i>, <i>CYP51A1</i>, <i>RFC3</i> and <i>TCF19</i> in FGF2 treated C342Y human fibroblasts and S252W human fibroblasts. Note that there was no <i>TCF19</i> expression detected in C342Y human fibroblasts.</p
    corecore