216 research outputs found
Nel positively regulates the genesis of retinal ganglion cells by promoting their differentiation and survival during development
Peer reviewedPublisher PD
PEDF and GDNF are key regulators of photoreceptor development and retinal neurogenesis in reaggregates from chick embryonic retina
Here, role(s) of pigment epithelial-derived factor (PEDF) and glial-derived neurotrophic factor (GDNF) on photoreceptor development in three-dimensional reaggregates from the retinae of the E6 chick embryo (rosetted spheroids) was investigated. Fully dispersed cells were reaggregated under serum-reduced conditions and supplemented with 50Β ng/ml PEDF alone or in combination with 50Β ng/ml GDNF. The spheroids were analyzed for cell growth, differentiation, and death using proliferating cell nuclear antigen, terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling, and other immunocytochemical stainings and semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) methods. PEDF strongly promoted synthesis of the messenger RNAs for blue and violet cone opsins and to a lesser extent on the red and green cone opsins. This correlated with an increase in the number of cone photoreceptors, as determined by the cone cell marker CERN906. Likewise, PEDF nearly completely inhibited rod differentiation, as detected by immunostaining with anti-rho4D2 and RT-PCR. Furthermore, PEDF accelerated proliferation of cells in the spheroids and inhibited apoptosis. As negative effects, PEDF inhibited the normal histotypic tissue formation of retinal aggregates and reduced the frequency of photoreceptor rosettes and IPL-like areas. Noticeably, supplementation of PEDF-treated cultures with GDNF reversed the effects of PEDF on spheroid morphology and on rod differentiation. This study establishes that PEDF strongly affects three-dimensional retinogenesis in vitro, most notably by inhibiting rod development and supporting proliferation and differentiation of cones, effects which are partially counteracted by GDNF
X-Box Binding Protein 1 Is Essential for the Anti-Oxidant Defense and Cell Survival in the Retinal Pigment Epithelium
Damage to the retinal pigment epithelium (RPE) is an early event in the pathogenesis of age-related macular degeneration (AMD). X-box binding protein 1 (XBP1) is a key transcription factor that regulates endoplasmic reticulum (ER) homeostasis and cell survival. This study aimed to delineate the role of endogenous XBP1 in the RPE. Our results show that in a rat model of light-induced retinal degeneration, XBP1 activation was suppressed in the RPE/choroid complex, accompanied by decreased anti-oxidant genes and increased oxidative stress. Knockdown of XBP1 by siRNA resulted in reduced expression of SOD1, SOD2, catalase, and glutathione synthase and sensitized RPE cells to oxidative damage. Using Cre/LoxP system, we generated a mouse line that lacks XBP1 only in RPE cells. Compared to wildtype littermates, RPE-XBP1 KO mice expressed less SOD1, SOD2, and catalase in the RPE, and had increased oxidative stress. At age 3 months and older, these mice exhibited apoptosis of RPE cells, decreased number of cone photoreceptors, shortened photoreceptor outer segment, reduced ONL thickness, and deficit in retinal function. Electron microscopy showed abnormal ultrastructure, Bruch's membrane thickening, and disrupted basal membrane infolding in XBP1-deficient RPE. These results indicate that XBP1 is an important gene involved in regulation of the anti-oxidant defense in the RPE, and that impaired activation of XBP1 may contribute to RPE dysfunction and cell death during retinal degeneration and AMD
Splash!: a prospective birth cohort study of the impact of environmental, social and family-level influences on child oral health and obesity related risk factors and outcomes
Background: Dental caries (decay) is the most prevalent disease of childhood. It is often left untreated and can impact negatively on general health, and physical, developmental, social and learning outcomes. Similar to other health issues, the greatest burden of dental caries is seen in those of low socio-economic position. In addition, a number of diet-related risk factors for dental caries are shared risk factors for the development of childhood obesity. These include high and frequent consumption of refined carbohydrates (predominately sugars), and soft drinks and other sweetened beverages, and low intake of (fluoridated) water. The prevalence of childhood obesity is also at a concerning level in most countries and there is an opportunity to determine interventions for addressing both of these largely preventable conditions through sustainable and equitable solutions. This study aims to prospectively examine the impact of drink choices on child obesity risk and oral health status.Methods/Design: This is a two-stage study using a mixed methods research approach. The first stage involves qualitative interviews of a sub-sample of recruited parents to develop an understanding of the processes involved in drink choice, and inform the development of the Discrete Choice Experiment analysis and the measurement instruments to be used in the second stage. The second stage involves the establishment of a prospective birth cohort of 500 children from disadvantaged communities in rural and regional Victoria, Australia (with and without water fluoridation). This longitudinal design allows measurement of changes in the child’s diet over time, exposure to fluoride sources including water, dental caries progression, and the risk of childhood obesity.Discussion: This research will provide a unique contribution to integrated health, education and social policy and program directions, by providing clearer policy relevant evidence on strategies to counter social and environmental factors which predispose infants and children to poor health, wellbeing and social outcomes; and evidence-based strategies to promote health and prevent disease through the adoption of healthier lifestyles and diet. Further, given the absence of evidence on the processes and effectiveness of contemporary policy implementation, such as community water fluoridation in rural and regional communities it’s approach and findings will be extremelyinformative.<br /
Keratinocytes as Depository of Ammonium-Inducible Glutamine Synthetase: Age- and Anatomy-Dependent Distribution in Human and Rat Skin
In inner organs, glutamine contributes to proliferation, detoxification and establishment of a mechanical barrier, i.e., functions essential for skin, as well. However, the age-dependent and regional peculiarities of distribution of glutamine synthetase (GS), an enzyme responsible for generation of glutamine, and factors regulating its enzymatic activity in mammalian skin remain undisclosed. To explore this, GS localization was investigated using immunohistochemistry and double-labeling of young and adult human and rat skin sections as well as skin cells in culture. In human and rat skin GS was almost completely co-localized with astrocyte-specific proteins (e.g. GFAP). While GS staining was pronounced in all layers of the epidermis of young human skin, staining was reduced and more differentiated among different layers with age. In stratum basale and in stratum spinosum GS was co-localized with the adherens junction component Γ-catenin. Inhibition of, glycogen synthase kinase 3Ξ² in cultured keratinocytes and HaCaT cells, however, did not support a direct role of Γ-catenin in regulation of GS. Enzymatic and reverse transcriptase polymerase chain reaction studies revealed an unusual mode of regulation of this enzyme in keratinocytes, i.e., GS activity, but not expression, was enhanced about 8β10 fold when the cells were exposed to ammonium ions. Prominent posttranscriptional up-regulation of GS activity in keratinocytes by ammonium ions in conjunction with widespread distribution of GS immunoreactivity throughout the epidermis allows considering the skin as a large reservoir of latent GS. Such a depository of glutamine-generating enzyme seems essential for continuous renewal of epidermal permeability barrier and during pathological processes accompanied by hyperammonemia
Nuttalliella namaqua: A Living Fossil and Closest Relative to the Ancestral Tick Lineage: Implications for the Evolution of Blood-Feeding in Ticks
Ticks are monophyletic and composed of the hard (Ixodidae) and soft (Argasidae) tick families, as well as the Nuttalliellidae, a family with a single species, Nuttalliella namaqua. Significant biological differences in lifestyle strategies for hard and soft ticks suggest that various blood-feeding adaptations occurred after their divergence. The phylogenetic relationships between the tick families have not yet been resolved due to the lack of molecular data for N. namaqua. This tick possesses a pseudo-scutum and apical gnathostoma as observed for ixodids, has a leathery cuticle similar to argasids and has been considered the evolutionary missing link between the two families. Little knowledge exists with regard to its feeding biology or host preferences. Data on its biology and systematic relationship to the other tick families could therefore be crucial in understanding the evolution of blood-feeding behaviour in ticks. Live specimens were collected and blood meal analysis showed the presence of DNA for girdled lizards from the Cordylid family. Feeding of ticks on lizards showed that engorgement occurred rapidly, similar to argasids, but that blood meal concentration occurs via malpighian excretion of water. Phylogenetic analysis of the 18S nuclear and 16S mitochondrial genes indicate that N. namaqua grouped basal to the main tick families. The data supports the monophyly of all tick families and suggests the evolution of argasid-like blood-feeding behaviour in the ancestral tick lineage. Based on the data and considerations from literature we propose an origin for ticks in the Karoo basin of Gondwanaland during the late Permian. The nuttalliellid family almost became extinct during the End Permian event, leaving N. namaqua as the closest living relative to the ancestral tick lineage and the evolutionary missing link between the tick families
- β¦