16 research outputs found

    Physical activity attenuates the influence of FTO variants on obesity risk: A meta-analysis of 218,166 adults and 19,268 children

    Get PDF
    Background: The FTO gene harbors the strongest known susceptibility locus for obesity. While many individual studies have suggested that physical activity (PA) may attenuate the effect of FTO on obesity risk, other studies have not been able to confirm this interaction. To confirm or refute unambiguously whether PA attenuates the association of FTO with obesity risk, we meta-analyzed data from 45 studies of adults (n = 218,166) and nine studies of children and adolescents (n = 19,268). Methods and Findings: All studies identified to have data on the FTO rs9939609 variant (or any proxy [r2>0.8]) and PA were invited to participate, regardless of ethnicity or age of the participants. PA was standardized by categorizing it into a dichotomous variable (physically inactive versus active) in each study. Overall, 25% of adults and 13% of children were categorized as inactive. Interaction analyses were performed within each study by including the FTO×PA interaction term in an additive model, adjusting for age and sex. Subsequently, random effects meta-analysis was used to pool the interaction terms. In adults, the minor (A-) allele of rs9939609 increased the odds of obesity by 1.23-fold/allele (95% CI 1.20-1.26), but PA attenuated this effect (pinteraction= 0.001). More specifically, the minor allele of rs9939609 increased the odds of obesity less in the physically active group (odds ratio = 1.22/allele, 95% CI 1.19-1.25) than in the inactive group (odds ratio = 1.30/allele, 95% CI 1.24-1.36). No such interaction was found in children and adolescents. Concl

    Who are the women who enrolled in the POSITIVE trial: a global study to support young hormone receptor positive breast cancer survivors desiring pregnancy

    Get PDF
    Background: Premenopausal women with early hormone-receptor positive (HR+) breast cancer receive 5-10 years of adjuvant endocrine therapy (ET) during which pregnancy is contraindicated and fertility may wane. The POSITIVE study investigates the impact of temporary ET interruption to allow pregnancy. Methods: POSITIVE enrolled women with stage I-III HR + early breast cancer, <42 years, who had received 18-30 months of adjuvant ET and wished to interrupt ET for pregnancy. Treatment interruption for up to 2 years was permitted to allow pregnancy, delivery and breastfeeding, followed by ET resumption to complete the planned duration. Findings: From 12/2014 to 12/2019, 518 women were enrolled at 116 institutions/20 countries/4 continents. At enrolment, the median age was 37 years and 74.9 % were nulliparous. Fertility preservation was used by 51.5 % of women. 93.2 % of patients had stage I/II disease, 66.0 % were node-negative, 54.7 % had breast conserving surgery, 61.9 % had received neo/adjuvant chemotherapy. Tamoxifen alone was the most prescribed ET (41.8 %), followed by tamoxifen + ovarian function suppression (OFS) (35.4 %). A greater proportion of North American women were <35 years at enrolment (42.7 %), had mastectomy (59.0 %) and received tamoxifen alone (59.8 %). More Asian women were nulliparous (81.0 %), had node negative disease (76.2%) and received tamoxifen + OFS (56.0 %). More European women had received chemotherapy (69.3 %). Interpretation: The characteristics of participants in the POSITIVE study provide insights to which patients and doctors considered it acceptable to interrupt ET to pursue pregnancy. Similarities and variations from a regional, sociodemographic, disease and treatment standpoint suggest specific sociocultural attitudes across the world. (c) 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    A new strategy for enhancing imputation quality of rare variants from next-generation sequencing data via combining SNP and exome chip data

    Get PDF
    Background: Rare variants have gathered increasing attention as a possible alternative source of missing heritability. Since next generation sequencing technology is not yet cost-effective for large-scale genomic studies, a widely used alternative approach is imputation. However, the imputation approach may be limited by the low accuracy of the imputed rare variants. To improve imputation accuracy of rare variants, various approaches have been suggested, including increasing the sample size of the reference panel, using sequencing data from study-specific samples (i.e., specific populations), and using local reference panels by genotyping or sequencing a subset of study samples. While these approaches mainly utilize reference panels, imputation accuracy of rare variants can also be increased by using exome chips containing rare variants. The exome chip contains 250 K rare variants selected from the discovered variants of about 12,000 sequenced samples. If exome chip data are available for previously genotyped samples, the combined approach using a genotype panel of merged data, including exome chips and SNP chips, should increase the imputation accuracy of rare variants. Results: In this study, we describe a combined imputation which uses both exome chip and SNP chip data simultaneously as a genotype panel. The effectiveness and performance of the combined approach was demonstrated using a reference panel of 848 samples constructed using exome sequencing data from the T2D-GENES consortium and 5,349 sample genotype panels consisting of an exome chip and SNP chip. As a result, the combined approach increased imputation quality up to 11 %, and genomic coverage for rare variants up to 117.7 % (MAF < 1 %), compared to imputation using the SNP chip alone. Also, we investigated the systematic effect of reference panels on imputation quality using five reference panels and three genotype panels. The best performing approach was the combination of the study specific reference panel and the genotype panel of combined data. Conclusions: Our study demonstrates that combined datasets, including SNP chips and exome chips, enhances both the imputation quality and genomic coverage of rare variants

    The genetic architecture of type 2 diabetes

    Get PDF
    The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of heritability. To test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole genome sequencing in 2,657 Europeans with and without diabetes, and exome sequencing in a total of 12,940 subjects from five ancestral groups. To increase statistical power, we expanded sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support a major role for lower-frequency variants in predisposition to type 2 diabetes

    Supplementary Material for: Mineral Metabolites, Angiotensin II Inhibition and Outcomes in Advanced Chronic Kidney Disease

    No full text
    <b><i>Background:</i></b> Evidence suggests that the renin-angiotensin-aldosterone system (RAAS) interacts with the vitamin D-fibroblast growth factor 23-Klotho axis. We investigated whether circulating mineral metabolism markers modify outcomes in response to RAAS inhibition in subjects with advanced chronic kidney disease (CKD). <b><i>Methods:</i></b> In this retrospective cohort study, we analyzed the association of angiotensin-converting enzyme inhibitor (ACEI) and angiotensin receptor blocker (ARB) use with all-cause mortality and dialysis initiation among 1,753 subjects (1,099 CKD, estimated glomerular filtration rate 18 ± 6 ml/min/1.73 m<sup>2</sup> and 654 end-stage renal disease [ESRD]) from the Homocysteine in Kidney and End Stage Renal Disease (HOST) study. A propensity score analysis accounted for indication bias and Cox regression models adjusted for mineral metabolism markers. <b><i>Results:</i></b> Mean follow-up was 3.2 years; 714 (41%) subjects died and 615 (56%) initiated dialysis. In adjusted analyses, all subjects treated with ACEI/ARB had a significantly lower hazard of death (hazards ratio (HR) 0.81, 95% CI 0.70-0.95, p = 0.007). Those with CKD not on dialysis and treated with ACEI/ARB trended toward a lower hazard of dialysis initiation (HR 0.86, 95% CI 0.73-1.01, p = 0.06). The association with mortality did not differ by level of mineral metabolism marker (p for interaction >0.16); however, the relationship with dialysis initiation differed according to the median serum phosphorus level (p for interaction <0.001). <b><i>Conclusions:</i></b> RAAS inhibition was associated with decreased all-cause mortality independent of disordered mineral metabolism among mostly male HOST subjects with advanced CKD and ESRD. However, among those with CKD not requiring dialysis, the renoprotection associated with RAAS inhibition was attenuated by higher serum phosphorus levels. Further studies are needed to confirm this association

    Ataxia-telangiectasia

    No full text

    A new strategy for enhancing imputation quality of rare variants from next-generation sequencing data via combining SNP and exome chip data

    No full text
    10.1186/s12864-015-2192-yBMC Genomics161110

    Starch Metabolism in Leaves

    No full text
    corecore