25 research outputs found

    Influence of aerosol injection on the liquid chemistry induced by an RF argon plasma jet

    Get PDF
    A radio-frequency driven plasma jet in annular geometry coupled with an aerosol injection into the effluent is proposed for the controllable reactive oxygen species (ROS)/reactive nitrogen species (RNS) production and delivery on biological targets in the context of plasma medicine, e.g. wound care. The role of the aqueous aerosol in modulating the reactive species production is investigated by combining physical and chemical analytics. Optical emission spectroscopy, electron paramagnetic resonance spectroscopy, and a biochemical model based on cysteine as a tracer molecule have been applied, revealing that aerosol injection shifts the production of ROS from atomic and singlet oxygen toward hydroxyl radicals, which are generated in the droplets. Species generation occurred mainly at the droplets boundary layer during their transport through the effluent, leading to a limited cysteine turnover upon introduction into the aerosol solution. The subsequent delivery of unmodified cysteine molecules at a target suggested the application of the plasma source for the topical delivery of drugs, expanding the potential applicability and effectiveness. The presence of RNS was negligible regardless of aerosol injection and only traces of the downstream products nitrate and nitrate were detected. In summary, the aerosol injection into the effluent opens new avenues to control UV radiation and reactive species output for the biomedical applications of non-thermal plasma sources, reaching out toward the regulation, safety, and efficacy of targeted applications

    Plasma-liquid interactions: a review and roadmap

    Get PDF
    Plasma-liquid interactions represent a growing interdisciplinary area of research involving plasma science, fluid dynamics, heat and mass transfer, photolysis, multiphase chemistry and aerosol science. This review provides an assessment of the state-of-the-art of this multidisciplinary area and identifies the key research challenges. The developments in diagnostics, modeling and further extensions of cross section and reaction rate databases that are necessary to address these challenges are discussed. The review focusses on non-equilibrium plasmas

    Generation of highly reactive species by plasma-liquid interaction

    No full text
    Because of the vital role of the liquid as interface in plasma medicine, this work is focused on the elucidation of the interaction of plasmas with biologically relevant liquids. The results of this thesis are an important step in the direction of the applications to real biological liquids such as blood and wound secretion ex vivo as well as in vivo. In this thesis the following questions are investigated and answered with the special focus on the free radicals as highly reactive and, therefore, hard to detect relevant group of chemical species: What is the impact of the atmospheric-pressure argon plasma jet on biologically relevant solutions? Which species are generated due to the plasma treatment of liquids? What is an appropriate detection procedure for the qualification and quantification of the short-lived species? Does the surrounding conditions influence the formation of liquid-phase reactive species and can this influence be used to tailor a desired liquid composition? What is the influence of the plasma surroundings? What is the influence of feed gas manipulation regarding the reactive species generation? Can these impacts be used for a selected reactive species composition generation? Does the treated liquid medium affect the plasma-generated reactive species output and in what way? Which are the underlying mechanisms and origins of the plasma-caused chemical changes in the solutions? Do reactive species exist, which origin is located in the gaseous phase? What is the impact of the plasma jet radiation?Auf Grund der wichtigen Rolle der Flüssigkeit als Grenzfläche in der Plasmamedizin ist diese Doktorarbeit auf die Aufklärung der Wechselwirkung des Plasmas mit biologisch relevanten Flüssigkeiten fokussiert. Die Ergebnisse dieser Arbeit sind ein wichtiger Schritt in Richtung der Anwendung von Plasmen zur Behandlung realer biologischer Flüssigkeiten wie beispielsweise Blut und Wundsekret ex vivo wie auch in vivo. In dieser Doktorarbeit wurden die folgenden Fragestellungen mit dem speziellen Fokus auf den hochreaktiven freien Radikalen untersucht und beantwortet: Welchen Einfluss hat der Atmosphärendruckplasmajet auf biologisch relevante Flüssigkeiten? Welche Spezies werden durch die Plasmabehandlung in der Flüssigkeit erzeugt? Welche Methode ist für den qualitativen und quantitativen Nachweis der kurzlebigen Spezies geeignet? Haben die den Plasmajet umgebenden Bedingungen einen Einfluss auf die Bildung der reaktiven Spezies in der Flüssigkeit und kann dieser Einfluss für eine gezielte Spezieszusammensetzung in der Flüssigkeit genutzt werden? Welchen Einfluss hat die Umgebungsluft auf das Plasma? Welchen Einfluss hat die Variation des Arbeitsgases hinsichtlich der Erzeugung reaktiver Spezies in der Flüssigkeit? Kann dieser Einfluss für eine gezielte Spezieskomposition genutzt werden? Beeinflusst das Plasma-behandelte flüssige Medium die Ausbeute der durchs Plasma erzeugten reaktiven Spezies? Welche Mechanismen liegen der Spezieserzeugung zu Grunde und wo liegt der Ursprung der durch das Plasma verursachten chemischen Änderungen in der Flüssigkeit? Existieren reaktive Spezies in der Flüssigkeit, deren Ursprung in der Gasphase liegt? Welchen Einfluss hat die Strahlung des Plasmajets auf die Speziesbildung in der Flüssigkeit
    corecore